IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11829-y.html
   My bibliography  Save this article

Ultrabright gap-enhanced Raman tags for high-speed bioimaging

Author

Listed:
  • Yuqing Zhang

    (Shanghai Jiao Tong University
    Hangzhou Dianzi University)

  • Yuqing Gu

    (Shanghai Jiao Tong University)

  • Jing He

    (Shanghai Jiao Tong University)

  • Benjamin D. Thackray

    (Shanghai Jiao Tong University)

  • Jian Ye

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Surface-enhanced Raman spectroscopy (SERS) is advantageous over fluorescence for bioimaging due to ultra-narrow linewidth of the fingerprint spectrum and weak photo-bleaching effect. However, the existing SERS imaging speed lags far behind practical needs, mainly limited by Raman signals of SERS nanoprobes. In this work, we report ultrabright gap-enhanced Raman tags (GERTs) with strong electromagnetic hot spots from interior sub-nanometer gaps and external petal-like shell structures, larger immobilization surface area, and Raman cross section of reporter molecules. These GERTs reach a Raman enhancement factor beyond 5 × 109 and a detection sensitivity down to a single-nanoparticle level. We use a 370 μW laser to realize high-resolution cell imaging within 6 s and high-contrast (a signal-to-background ratio of 80) wide-area (3.2 × 2.8 cm2) sentinel lymph node imaging within 52 s. These nanoprobes offer a potential solution to overcome the current bottleneck in the field of SERS-based bioimaging.

Suggested Citation

  • Yuqing Zhang & Yuqing Gu & Jing He & Benjamin D. Thackray & Jian Ye, 2019. "Ultrabright gap-enhanced Raman tags for high-speed bioimaging," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11829-y
    DOI: 10.1038/s41467-019-11829-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11829-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11829-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacopo Cardellini & Caterina Dallari & Ilaria Santis & Lorenzo Riccio & Costanza Ceni & Amelia Morrone & Martino Calamai & Francesco Saverio Pavone & Caterina Credi & Costanza Montis & Debora Berti, 2024. "Hybrid lipid-AuNP clusters as highly efficient SERS substrates for biomedical applications," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11829-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.