Author
Listed:
- Kitaek Song
(Korea Advanced Institute of Science and Technology (KAIST)
College of Natural Sciences, Seoul National University)
- Kunsoon Kim
(Korea Advanced Institute of Science and Technology (KAIST)
College of Natural Sciences, Seoul National University)
- Daeun Hong
(College of Natural Sciences, Seoul National University)
- Jungwon Kim
(Korea Advanced Institute of Science and Technology (KAIST)
College of Natural Sciences, Seoul National University)
- Chae Eun Heo
(Korea University)
- Hugh I. Kim
(Korea University)
- Soon Hyeok Hong
(Korea Advanced Institute of Science and Technology (KAIST)
College of Natural Sciences, Seoul National University)
Abstract
Development of versatile ruthenium olefin-metathesis catalysts with high activity, stability, and selectivity is a continuous challenge. Here we report highly controllable ruthenium catalysts using readily accessible and versatile N-vinylsulfonamides as carbene precursors. Catalyst initiation rates were controlled in a straightforward manner, from latent to fast initiating, through the facile modulation of the N-vinylsulfonamide ligands. Trifluoromethanesulfonamide-based catalysts initiated ultrarapidly even at temperatures as low as −60 °C and continuously propagated rapidly, enabling the enthalpically and entropically less-favored ring-opening metathesis polymerizations of low-strained functionalized cyclopentene derivatives, some of which are not accessible with previous olefin-metathesis catalysts. To our surprise, the developed catalysts facilitated the polymerization of cyclopentadiene (CPD), a feedstock that is easily and commonly obtainable through the steam cracking of naphtha, which has, to the best of our knowledge, not been previously achieved due to its low ring strain and facile dimerization even at low temperatures (below 0 °C).
Suggested Citation
Kitaek Song & Kunsoon Kim & Daeun Hong & Jungwon Kim & Chae Eun Heo & Hugh I. Kim & Soon Hyeok Hong, 2019.
"Highly active ruthenium metathesis catalysts enabling ring-opening metathesis polymerization of cyclopentadiene at low temperatures,"
Nature Communications, Nature, vol. 10(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11806-5
DOI: 10.1038/s41467-019-11806-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11806-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.