IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11793-7.html
   My bibliography  Save this article

Programmable biomolecular switches for rewiring flux in Escherichia coli

Author

Listed:
  • Cong Gao

    (Jiangnan University
    Jiangnan University)

  • Jianshen Hou

    (Jiangnan University
    Jiangnan University)

  • Peng Xu

    (University of Maryland Baltimore County)

  • Liang Guo

    (Jiangnan University
    Jiangnan University)

  • Xiulai Chen

    (Jiangnan University
    Jiangnan University)

  • Guipeng Hu

    (Jiangnan University
    Jiangnan University)

  • Chao Ye

    (Jiangnan University
    Jiangnan University)

  • Harley Edwards

    (University of Maryland Baltimore County)

  • Jian Chen

    (Jiangnan University)

  • Wei Chen

    (Jiangnan University)

  • Liming Liu

    (Jiangnan University
    Jiangnan University
    Jiangnan University)

Abstract

Synthetic biology aims to develop programmable tools to perform complex functions such as redistributing metabolic flux in industrial microorganisms. However, development of protein-level circuits is limited by availability of designable, orthogonal, and composable tools. Here, with the aid of engineered viral proteases and proteolytic signals, we build two sets of controllable protein units, which can be rationally configured to three tools. Using a protease-based dynamic regulation circuit to fine-tune metabolic flow, we achieve 12.63 g L−1 shikimate titer in minimal medium without inducer. In addition, the carbon catabolite repression is alleviated by protease-based inverter-mediated flux redistribution under multiple carbon sources. By coordinating reaction rate using a protease-based oscillator in E. coli, we achieve d-xylonate productivity of 7.12 g L−1 h−1 with a titer of 199.44 g L−1. These results highlight the applicability of programmable protein switches to metabolic engineering for valuable chemicals production.

Suggested Citation

  • Cong Gao & Jianshen Hou & Peng Xu & Liang Guo & Xiulai Chen & Guipeng Hu & Chao Ye & Harley Edwards & Jian Chen & Wei Chen & Liming Liu, 2019. "Programmable biomolecular switches for rewiring flux in Escherichia coli," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11793-7
    DOI: 10.1038/s41467-019-11793-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11793-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11793-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenwen Diao & Liang Guo & Qiang Ding & Cong Gao & Guipeng Hu & Xiulai Chen & Yang Li & Linpei Zhang & Wei Chen & Jian Chen & Liming Liu, 2021. "Reprogramming microbial populations using a programmed lysis system to improve chemical production," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11793-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.