IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11775-9.html
   My bibliography  Save this article

Quantum localization and delocalization of charge carriers in organic semiconducting crystals

Author

Listed:
  • Samuele Giannini

    (University College London)

  • Antoine Carof

    (University College London)

  • Matthew Ellis

    (University College London)

  • Hui Yang

    (University College London)

  • Orestis George Ziogos

    (University College London)

  • Soumya Ghosh

    (University College London)

  • Jochen Blumberger

    (University College London
    Technische Universität München)

Abstract

Charge carrier transport in organic semiconductors is at the heart of many revolutionary technologies ranging from organic transistors, light-emitting diodes, flexible displays and photovoltaic cells. Yet, the nature of charge carriers and their transport mechanism in these materials is still unclear. Here we show that by solving the time-dependent electronic Schrödinger equation coupled to nuclear motion for eight organic molecular crystals, the excess charge carrier forms a polaron delocalized over up to 10–20 molecules in the most conductive crystals. The polaron propagates through the crystal by diffusive jumps over several lattice spacings at a time during which it expands more than twice its size. Computed values for polaron size and charge mobility are in excellent agreement with experimental estimates and correlate very well with the recently proposed transient localization theory.

Suggested Citation

  • Samuele Giannini & Antoine Carof & Matthew Ellis & Hui Yang & Orestis George Ziogos & Soumya Ghosh & Jochen Blumberger, 2019. "Quantum localization and delocalization of charge carriers in organic semiconducting crystals," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11775-9
    DOI: 10.1038/s41467-019-11775-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11775-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11775-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuele Giannini & Wei-Tao Peng & Lorenzo Cupellini & Daniele Padula & Antoine Carof & Jochen Blumberger, 2022. "Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Remington L. Carey & Samuele Giannini & Sam Schott & Vincent Lemaur & Mingfei Xiao & Suryoday Prodhan & Linjun Wang & Michelangelo Bovoloni & Claudio Quarti & David Beljonne & Henning Sirringhaus, 2024. "Spin relaxation of electron and hole polarons in ambipolar conjugated polymers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Arjun Ashoka & Nicolas Gauriot & Aswathy V. Girija & Nipun Sawhney & Alexander J. Sneyd & Kenji Watanabe & Takashi Taniguchi & Jooyoung Sung & Christoph Schnedermann & Akshay Rao, 2022. "Direct observation of ultrafast singlet exciton fission in three dimensions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11775-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.