IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11763-z.html
   My bibliography  Save this article

Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks

Author

Listed:
  • Mi Feng

    (East China Normal University
    University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Shi-Min Cai

    (University of Electronic Science and Technology of China
    University of Electronic Science and Technology of China)

  • Ming Tang

    (East China Normal University
    East China Normal University)

  • Ying-Cheng Lai

    (Arizona State University)

Abstract

Epidemic spreading processes in the real world depend on human behaviors and, consequently, are typically non-Markovian in that the key events underlying the spreading dynamics cannot be described as a Poisson random process and the corresponding event time is not exponentially distributed. In contrast to Markovian type of spreading dynamics for which mathematical theories have been well developed, we lack a comprehensive framework to analyze and fully understand non-Markovian spreading processes. Here we develop a mean-field theory to address this challenge, and demonstrate that the theory enables accurate prediction of both the transient phase and the steady states of non-Markovian susceptible-infected-susceptible spreading dynamics on synthetic and empirical networks. We further find that the existence of equivalence between non-Markovian and Markovian spreading depends on a specific edge activation mechanism. In particular, when temporal correlations are absent on active edges, the equivalence can be expected; otherwise, an exact equivalence no longer holds.

Suggested Citation

  • Mi Feng & Shi-Min Cai & Ming Tang & Ying-Cheng Lai, 2019. "Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11763-z
    DOI: 10.1038/s41467-019-11763-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11763-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11763-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yanpeng & Chen, Lei & Jia, Chun-Xiao & Meng, Fanyuan & Liu, Run-Ran, 2023. "Non-Markovian node fragility in cascading failures on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Wu, Dayu & Liu, Ying & Tang, Ming & Xu, Xiao-Ke & Guan, Shuguang, 2022. "Impact of hopping characteristics of inter-layer commuters on epidemic spreading in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Tomovski, Igor & Basnarkov, Lasko & Abazi, Alajdin, 2022. "Endemic state equivalence between non-Markovian SEIS and Markovian SIS model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    4. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Basnarkov, Lasko & Tomovski, Igor & Sandev, Trifce & Kocarev, Ljupco, 2022. "Non-Markovian SIR epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Li, Jiachen & Li, Wenjie & Gao, Feng & Cai, Meng & Zhang, Zengping & Liu, Xiaoyang & Wang, Wei, 2024. "Social contagions on higher-order community networks," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    7. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    8. Wang, Xuhui & Wu, Jiao & Yang, Zheng & Xu, Kesheng & Wang, Zhengling & Zheng, Muhua, 2024. "The correlation between independent edge and triangle degrees promote the explosive information spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11763-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.