Author
Listed:
- Konstantin F. Willeke
(Tuebingen University
Tuebingen University
Tuebingen University)
- Xiaoguang Tian
(Tuebingen University
Tuebingen University
Tuebingen University)
- Antimo Buonocore
(Tuebingen University
Tuebingen University)
- Joachim Bellet
(Tuebingen University
Tuebingen University
Tuebingen University)
- Araceli Ramirez-Cardenas
(Tuebingen University
Tuebingen University)
- Ziad M. Hafed
(Tuebingen University
Tuebingen University)
Abstract
Despite strong evidence to the contrary in the literature, microsaccades are overwhelmingly described as involuntary eye movements. Here we show in both human subjects and monkeys that individual microsaccades of any direction can easily be triggered: (1) on demand, based on an arbitrary instruction, (2) without any special training, (3) without visual guidance by a stimulus, and (4) in a spatially and temporally accurate manner. Subjects voluntarily generated instructed “memory-guided” microsaccades readily, and similarly to how they made normal visually-guided ones. In two monkeys, we also observed midbrain superior colliculus neurons that exhibit movement-related activity bursts exclusively for memory-guided microsaccades, but not for similarly-sized visually-guided movements. Our results demonstrate behavioral and neural evidence for voluntary control over individual microsaccades, supporting recently discovered functional contributions of individual microsaccade generation to visual performance alterations and covert visual selection, as well as observations that microsaccades optimize eye position during high acuity visually-guided behavior.
Suggested Citation
Konstantin F. Willeke & Xiaoguang Tian & Antimo Buonocore & Joachim Bellet & Araceli Ramirez-Cardenas & Ziad M. Hafed, 2019.
"Memory-guided microsaccades,"
Nature Communications, Nature, vol. 10(1), pages 1-14, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11711-x
DOI: 10.1038/s41467-019-11711-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11711-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.