IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11605-y.html
   My bibliography  Save this article

Parallels in the sequential organization of birdsong and human speech

Author

Listed:
  • Tim Sainburg

    (University of California, UC San Diego
    Center for Academic Research & Training in Anthropogeny, UC San Diego)

  • Brad Theilman

    (University of California, UC San Diego)

  • Marvin Thielk

    (University of California, UC San Diego)

  • Timothy Q. Gentner

    (University of California, UC San Diego
    University of California, UC San Diego
    Neurobiology Section, Division of Biological Sciences, UC San Diego
    Kavli Institute for Brain and Mind)

Abstract

Human speech possesses a rich hierarchical structure that allows for meaning to be altered by words spaced far apart in time. Conversely, the sequential structure of nonhuman communication is thought to follow non-hierarchical Markovian dynamics operating over only short distances. Here, we show that human speech and birdsong share a similar sequential structure indicative of both hierarchical and Markovian organization. We analyze the sequential dynamics of song from multiple songbird species and speech from multiple languages by modeling the information content of signals as a function of the sequential distance between vocal elements. Across short sequence-distances, an exponential decay dominates the information in speech and birdsong, consistent with underlying Markovian processes. At longer sequence-distances, the decay in information follows a power law, consistent with underlying hierarchical processes. Thus, the sequential organization of acoustic elements in two learned vocal communication signals (speech and birdsong) shows functionally equivalent dynamics, governed by similar processes.

Suggested Citation

  • Tim Sainburg & Brad Theilman & Marvin Thielk & Timothy Q. Gentner, 2019. "Parallels in the sequential organization of birdsong and human speech," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11605-y
    DOI: 10.1038/s41467-019-11605-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11605-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11605-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takuto Kawaji & Mizuki Fujibayashi & Kentaro Abe, 2024. "Goal-directed and flexible modulation of syllable sequence within birdsong," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Peter M C Harrison & Roberta Bianco & Maria Chait & Marcus T Pearce, 2020. "PPM-Decay: A computational model of auditory prediction with memory decay," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-41, November.
    3. Tim Sainburg & Marvin Thielk & Timothy Q Gentner, 2020. "Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-48, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11605-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.