Author
Listed:
- Anastasis Petri
(Imperial College London)
- Hyo Jung Kim
(University of Nottingham)
- Yaoxian Xu
(Imperial College London)
- Rens de Groot
(Imperial College London)
- Chan Li
(University of Nottingham)
- Aline Vandenbulcke
(Laboratory for Thrombosis Research)
- Karen Vanhoorelbeke
(Laboratory for Thrombosis Research)
- Jonas Emsley
(University of Nottingham)
- James T. B. Crawley
(Imperial College London)
Abstract
Platelet recruitment to sites of blood vessel damage is highly dependent upon von Willebrand factor (VWF). VWF platelet-tethering function is proteolytically regulated by the metalloprotease ADAMTS13. Proteolysis depends upon shear-induced conformational changes in VWF that reveal the A2 domain cleavage site. Multiple ADAMTS13 exosite interactions are involved in recognition of the unfolded A2 domain. Here we report through kinetic analyses that, in binding VWF, the ADAMTS13 cysteine-rich and spacer domain exosites bring enzyme and substrate into proximity. Thereafter, binding of the ADAMTS13 disintegrin-like domain exosite to VWF allosterically activates the adjacent metalloprotease domain to facilitate proteolysis. The crystal structure of the ADAMTS13 metalloprotease to spacer domains reveals that the metalloprotease domain exhibits a latent conformation in which the active-site cleft is occluded supporting the requirement for an allosteric change to enable accommodation of the substrate. Our data demonstrate that VWF functions as both the activating cofactor and substrate for ADAMTS13.
Suggested Citation
Anastasis Petri & Hyo Jung Kim & Yaoxian Xu & Rens de Groot & Chan Li & Aline Vandenbulcke & Karen Vanhoorelbeke & Jonas Emsley & James T. B. Crawley, 2019.
"Crystal structure and substrate-induced activation of ADAMTS13,"
Nature Communications, Nature, vol. 10(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11474-5
DOI: 10.1038/s41467-019-11474-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11474-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.