IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11391-7.html
   My bibliography  Save this article

Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin

Author

Listed:
  • Ruth Hendus-Altenburger

    (University of Copenhagen)

  • Xinru Wang

    (University of Arizona
    Brown University)

  • Lise M. Sjøgaard-Frich

    (University of Copenhagen)

  • Elena Pedraz-Cuesta

    (University of Copenhagen)

  • Sarah R. Sheftic

    (University of Arizona)

  • Anne H. Bendsøe

    (University of Copenhagen
    University of Copenhagen)

  • Rebecca Page

    (University of Arizona)

  • Birthe B. Kragelund

    (University of Copenhagen)

  • Stine F. Pedersen

    (University of Copenhagen)

  • Wolfgang Peti

    (University of Arizona)

Abstract

Very little is known about how Ser/Thr protein phosphatases specifically recruit and dephosphorylate substrates. Here, we identify how the Na+/H+-exchanger 1 (NHE1), a key regulator of cellular pH homeostasis, is regulated by the Ser/Thr phosphatase calcineurin (CN). NHE1 activity is increased by phosphorylation of NHE1 residue T779, which is specifically dephosphorylated by CN. While it is known that Ser/Thr protein phosphatases prefer pThr over pSer, we show that this preference is not key to this exquisite CN selectivity. Rather a combination of molecular mechanisms, including recognition motifs, dynamic charge-charge interactions and a substrate interaction pocket lead to selective dephosphorylation of pT779. Our data identify T779 as a site regulating NHE1-mediated cellular acid extrusion and provides a molecular understanding of NHE1 substrate selection by CN, specifically, and how phosphatases recruit specific substrates, generally.

Suggested Citation

  • Ruth Hendus-Altenburger & Xinru Wang & Lise M. Sjøgaard-Frich & Elena Pedraz-Cuesta & Sarah R. Sheftic & Anne H. Bendsøe & Rebecca Page & Birthe B. Kragelund & Stine F. Pedersen & Wolfgang Peti, 2019. "Molecular basis for the binding and selective dephosphorylation of Na+/H+ exchanger 1 by calcineurin," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11391-7
    DOI: 10.1038/s41467-019-11391-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11391-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11391-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautam Srivastava & Meng S. Choy & Nicolas Bolik-Coulon & Rebecca Page & Wolfgang Peti, 2023. "Inhibitor-3 inhibits Protein Phosphatase 1 via a metal binding dynamic protein–protein interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Idil Ulengin-Talkish & Matthew A. H. Parson & Meredith L. Jenkins & Jagoree Roy & Alexis Z. L. Shih & Nicole St-Denis & Gergo Gulyas & Tamas Balla & Anne-Claude Gingras & Péter Várnai & Elizabeth Coni, 2021. "Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11391-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.