IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11351-1.html
   My bibliography  Save this article

High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry

Author

Listed:
  • Haneol Lim

    (University of Southern California)

  • James L. Young

    (National Renewable Energy Laboratory)

  • John F. Geisz

    (National Renewable Energy Laboratory)

  • Daniel J. Friedman

    (National Renewable Energy Laboratory)

  • Todd G. Deutsch

    (National Renewable Energy Laboratory)

  • Jongseung Yoon

    (University of Southern California
    University of Southern California)

Abstract

Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of ‘black’ gallium indium phosphide (GaInP2), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.

Suggested Citation

  • Haneol Lim & James L. Young & John F. Geisz & Daniel J. Friedman & Todd G. Deutsch & Jongseung Yoon, 2019. "High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11351-1
    DOI: 10.1038/s41467-019-11351-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11351-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11351-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfang Zhang & Yuntao Zhu & Christian Njel & Yuxin Liu & Pietro Dallabernardina & Molly M. Stevens & Peter H. Seeberger & Oleksandr Savateev & Felix F. Loeffler, 2023. "Metal-free photoanodes for C–H functionalization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yixin Xiao & Xianghua Kong & Srinivas Vanka & Wan Jae Dong & Guosong Zeng & Zhengwei Ye & Kai Sun & Ishtiaque Ahmed Navid & Baowen Zhou & Francesca M. Toma & Hong Guo & Zetian Mi, 2023. "Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11351-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.