IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11315-5.html
   My bibliography  Save this article

Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling

Author

Listed:
  • Tuomas P. Rossi

    (Chalmers University of Technology)

  • Timur Shegai

    (Chalmers University of Technology)

  • Paul Erhart

    (Chalmers University of Technology)

  • Tomasz J. Antosiewicz

    (Chalmers University of Technology
    University of Warsaw)

Abstract

Strong light-matter interactions in both the single-emitter and collective strong coupling regimes attract significant attention due to emerging applications in quantum and nonlinear optics as well as opportunities for modifying material-related properties. Exploration of these phenomena is theoretically demanding, as polaritons exist at the intersection between quantum optics, solid state physics, and quantum chemistry. Fortunately, nanoscale polaritons can be realized in small plasmon-molecule systems, enabling treatment with ab initio methods. Here, we show that time-dependent density-functional theory calculations access the physics of nanoscale plasmon-molecule hybrids and predict vacuum Rabi splitting. By considering a system comprising a few-hundred-atom aluminum nanoparticle interacting with benzene molecules, we show that cavity quantum electrodynamics holds down to resonators of a few cubic nanometers in size, yielding a single-molecule coupling strength exceeding 200 meV due to a massive vacuum field of 4.5 V · nm−1. In a broader perspective, ab initio methods enable parameter-free in-depth studies of polaritonic systems for emerging applications.

Suggested Citation

  • Tuomas P. Rossi & Timur Shegai & Paul Erhart & Tomasz J. Antosiewicz, 2019. "Strong plasmon-molecule coupling at the nanoscale revealed by first-principles modeling," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11315-5
    DOI: 10.1038/s41467-019-11315-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11315-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11315-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renming Liu & Ming Geng & Jindong Ai & Xinyi Fan & Zhixiang Liu & Yu-Wei Lu & Yanmin Kuang & Jing-Feng Liu & Lijun Guo & Lin Wu, 2024. "Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ananta Dey & Amal Mendalz & Anna Wach & Robert Bericat Vadell & Vitor R. Silveira & Paul Maurice Leidinger & Thomas Huthwelker & Vitalii Shtender & Zbynek Novotny & Luca Artiglia & Jacinto Sá, 2024. "Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11315-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.