IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11294-7.html
   My bibliography  Save this article

Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae

Author

Listed:
  • Sang Yup Kim

    (Yale University)

  • Robert Baines

    (Yale University)

  • Joran Booth

    (Yale University)

  • Nikolaos Vasios

    (Harvard University
    Harvard University)

  • Katia Bertoldi

    (Harvard University
    Harvard University)

  • Rebecca Kramer-Bottiglio

    (Yale University)

Abstract

Compliant, continuum structures allow living creatures to perform complex tasks inaccessible to artificial rigid systems. Although advancements in hyper-elastic materials have spurred the development of synthetic soft structures (i.e., artificial muscles), these structures have yet to match the precise control and diversity of motions witnessed in living creatures. Cephalopods tentacles, for example, can undergo multiple trajectories using muscular hydrostat, a structure consisting of aggregated laminae of unidirectional muscle fibers. Here, we present a self-adhesive composite lamina inspired by the structural morphology of the muscular hydrostat, which adheres to any volumetrically expanding soft body to govern its motion trajectory. The composite lamina is stretchable only in one direction due to inextensible continuous fibers unidirectionally embedded within its hyper-elastic matrix. We showcase reconfiguration of inflation trajectories of two- and three-dimensional soft bodies by simply adhering laminae to their surfaces.

Suggested Citation

  • Sang Yup Kim & Robert Baines & Joran Booth & Nikolaos Vasios & Katia Bertoldi & Rebecca Kramer-Bottiglio, 2019. "Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11294-7
    DOI: 10.1038/s41467-019-11294-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11294-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11294-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Zhang & Zhuang Zhang & Yun Peng & Yanlin Zhang & Siqi An & Yunjie Wang & Zirui Zhai & Yan Xu & Hanqing Jiang, 2023. "Plug & play origami modules with all-purpose deformation modes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11294-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.