IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11146-4.html
   My bibliography  Save this article

Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software

Author

Listed:
  • Daniel L. Cameron

    (Walter and Eliza Hall Institute of Medical Research
    University of Melbourne)

  • Leon Stefano

    (Walter and Eliza Hall Institute of Medical Research)

  • Anthony T. Papenfuss

    (Walter and Eliza Hall Institute of Medical Research
    University of Melbourne
    Victorian Comprehensive Cancer Centre
    University of Melbourne)

Abstract

In recent years, many software packages for identifying structural variants (SVs) using whole-genome sequencing data have been released. When published, a new method is commonly compared with those already available, but this tends to be selective and incomplete. The lack of comprehensive benchmarking of methods presents challenges for users in selecting methods and for developers in understanding algorithm behaviours and limitations. Here we report the comprehensive evaluation of 10 SV callers, selected following a rigorous process and spanning the breadth of detection approaches, using high-quality reference cell lines, as well as simulations. Due to the nature of available truth sets, our focus is on general-purpose rather than somatic callers. We characterise the impact on performance of event size and type, sequencing characteristics, and genomic context, and analyse the efficacy of ensemble calling and calibration of variant quality scores. Finally, we provide recommendations for both users and methods developers.

Suggested Citation

  • Daniel L. Cameron & Leon Stefano & Anthony T. Papenfuss, 2019. "Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11146-4
    DOI: 10.1038/s41467-019-11146-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11146-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11146-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Gong & Vanessa M Hayes & Eva K F Chan, 2020. "Shiny-SoSV: A web-based performance calculator for somatic structural variant detection," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-20, August.
    2. David E. Torres & H. Martin Kramer & Vittorio Tracanna & Gabriel L. Fiorin & David E. Cook & Michael F. Seidl & Bart P. H. J. Thomma, 2024. "Implications of the three-dimensional chromatin organization for genome evolution in a fungal plant pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Ramesh Rajaby & Dong-Xu Liu & Chun Hang Au & Yuen-Ting Cheung & Amy Yuet Ting Lau & Qing-Yong Yang & Wing-Kin Sung, 2023. "INSurVeyor: improving insertion calling from short read sequencing data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Yoshitaka Sakamoto & Shuhei Miyake & Miho Oka & Akinori Kanai & Yosuke Kawai & Satoi Nagasawa & Yuichi Shiraishi & Katsushi Tokunaga & Takashi Kohno & Masahide Seki & Yutaka Suzuki & Ayako Suzuki, 2022. "Phasing analysis of lung cancer genomes using a long read sequencer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Ramesh Rajaby & Wing-Kin Sung, 2024. "SurVIndel2: improving copy number variant calling from next-generation sequencing using hidden split reads," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11146-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.