IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11144-6.html
   My bibliography  Save this article

Detecting topology freezing transition temperature of vitrimers by AIE luminogens

Author

Listed:
  • Yang Yang

    (Tsinghua University)

  • Shuai Zhang

    (Tsinghua University)

  • Xiqi Zhang

    (Chinese Academy of Sciences)

  • Longcheng Gao

    (Beihang University)

  • Yen Wei

    (Tsinghua University
    Chung-Yuan Christian University)

  • Yan Ji

    (Tsinghua University)

Abstract

Vitrimers are one kind of covalently crosslinked polymers that can be reprocessed. Topology freezing transition temperature (Tv) is vitrimer’s upper limit temperature for service and lower temperature for recycle. However, there has been no proper method to detect the intrinsic Tv till now. Even worse, current testing methods may lead to a misunderstanding of vitrimers. Here we provide a sensitive and universal method by doping or swelling aggregation-induced-emission (AIE) luminogens into vitrimers. The fluorescence of AIE-luminogens changes dramatically below and over Tv, providing an accurate method to measure Tv without the interference of external force. Moreover, according to this method, Tv is independent of catalyst loading. The opposite idea has been kept for a long time. This method not only is helpful for the practical application of vitrimers so as to reduce white wastes, but also may facilitate deep understanding of vitrimers and further development of functional polymer materials.

Suggested Citation

  • Yang Yang & Shuai Zhang & Xiqi Zhang & Longcheng Gao & Yen Wei & Yan Ji, 2019. "Detecting topology freezing transition temperature of vitrimers by AIE luminogens," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11144-6
    DOI: 10.1038/s41467-019-11144-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11144-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11144-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Tong & Jianhong Dai & Jiangman Sun & Yuanyuan Liu & Xiaoli Ma & Zhehong Liu & Teng Ma & Jiao Tan & Zhen Yao & Shanmin Wang & Haiyan Zheng & Kai Wang & Fang Hong & Xiaohui Yu & Chunxiao Gao & Xi, 2022. "Fluorescence-based monitoring of the pressure-induced aggregation microenvironment evolution for an AIEgen under multiple excitation channels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11144-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.