IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10980-w.html
   My bibliography  Save this article

Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5

Author

Listed:
  • Konstantinos Konstantinou

    (University of Cambridge)

  • Felix C. Mocanu

    (University of Cambridge)

  • Tae-Hoon Lee

    (University of Cambridge)

  • Stephen R. Elliott

    (University of Cambridge)

Abstract

Understanding the relation between the time-dependent resistance drift in the amorphous state of phase-change materials and the localised states in the band gap of the glass is crucial for the development of memory devices with increased storage density. Here a machine-learned interatomic potential is utilised to generate an ensemble of glass models of the prototypical phase-change alloy, Ge2Sb2Te5, to obtain reliable statistics. Hybrid density-functional theory is used to identify and characterise the geometric and electronic structures of the mid-gap states. 5-coordinated Ge atoms are the local defective bonding environments mainly responsible for these electronic states. The structural motif for the localisation of the mid-gap states is a crystalline-like atomic environment within the amorphous network. An extra electron is trapped spontaneously by these mid-gap states, creating deep traps in the band gap. The results provide significant insights that can help to rationalise the design of multi-level-storage memory devices.

Suggested Citation

  • Konstantinos Konstantinou & Felix C. Mocanu & Tae-Hoon Lee & Stephen R. Elliott, 2019. "Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10980-w
    DOI: 10.1038/s41467-019-10980-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10980-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10980-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John C. Thomas & Wei Chen & Yihuang Xiong & Bradford A. Barker & Junze Zhou & Weiru Chen & Antonio Rossi & Nolan Kelly & Zhuohang Yu & Da Zhou & Shalini Kumari & Edward S. Barnard & Joshua A. Robinson, 2024. "A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Renjie Wu & Rongchuan Gu & Tamihiro Gotoh & Zihao Zhao & Yuting Sun & Shujing Jia & Xiangshui Miao & Stephen R. Elliott & Min Zhu & Ming Xu & Zhitang Song, 2023. "The role of arsenic in the operation of sulfur-based electrical threshold switches," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10980-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.