IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10929-z.html
   My bibliography  Save this article

Landscape of transcriptomic interactions between breast cancer and its microenvironment

Author

Listed:
  • Natalie S. Fox

    (Ontario Institute for Cancer Research
    University of Toronto)

  • Syed Haider

    (Ontario Institute for Cancer Research
    University of Oxford
    The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research)

  • Adrian L. Harris

    (University of Oxford)

  • Paul C. Boutros

    (Ontario Institute for Cancer Research
    University of Toronto
    University of Toronto
    University of California)

Abstract

Solid tumours comprise mixtures of tumour cells (TCs) and tumour-adjacent cells (TACs), and the intricate interconnections between these diverse populations shape the tumour’s microenvironment. Despite this complexity, clinical genomic profiling is typically performed from bulk samples, without distinguishing TCs from TACs. To better understand TC–TAC interactions, we computationally distinguish their transcriptomes in 1780 primary breast tumours. We show that TC and TAC mRNA abundances are divergently associated with clinical phenotypes, including tumour subtypes and patient survival. These differences reflect distinct responses of TCs and TACs to specific somatic driver mutations, particularly TP53. These data further elucidate how the molecular interplay between breast tumours and their microenvironment drives aggressive tumour phenotypes.

Suggested Citation

  • Natalie S. Fox & Syed Haider & Adrian L. Harris & Paul C. Boutros, 2019. "Landscape of transcriptomic interactions between breast cancer and its microenvironment," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10929-z
    DOI: 10.1038/s41467-019-10929-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10929-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10929-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10929-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.