IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10896-5.html
   My bibliography  Save this article

Emergent symmetries in block copolymer epitaxy

Author

Listed:
  • Yi Ding

    (Massachusetts Institute of Technology)

  • Karim R. Gadelrab

    (Massachusetts Institute of Technology)

  • Katherine Mizrahi Rodriguez

    (Massachusetts Institute of Technology)

  • Hejin Huang

    (Massachusetts Institute of Technology)

  • Caroline A. Ross

    (Massachusetts Institute of Technology)

  • Alfredo Alexander-Katz

    (Massachusetts Institute of Technology)

Abstract

The directed self-assembly (DSA) of block copolymers (BCPs) has shown promise in fabricating customized two-dimensional (2D) geometries at the nano- and meso-scale. Here, we discover spontaneous symmetry breaking and superlattice formation in DSA of BCP. We observe the emergence of low symmetry phases in high symmetry templates for BCPs that would otherwise not exhibit these phases in the bulk or thin films. The emergence phenomena are found to be a general behavior of BCP in various template layouts with square local geometry, such as 44 and 32434 Archimedean tilings and octagonal quasicrystals. To elucidate the origin of this phenomenon and confirm the stability of the emergent phases, we implement self-consistent field theory (SCFT) simulations and a strong-stretching theory (SST)-based analytical model. Our work demonstrates an emergent behavior of soft matter and draws an intriguing connection between 2-dimensional soft matter self-assembly at the mesoscale and inorganic epitaxy at the atomic scale.

Suggested Citation

  • Yi Ding & Karim R. Gadelrab & Katherine Mizrahi Rodriguez & Hejin Huang & Caroline A. Ross & Alfredo Alexander-Katz, 2019. "Emergent symmetries in block copolymer epitaxy," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10896-5
    DOI: 10.1038/s41467-019-10896-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10896-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10896-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian T. Russell & Suwon Bae & Ashwanth Subramanian & Nikhil Tiwale & Gregory Doerk & Chang-Yong Nam & Masafumi Fukuto & Kevin G. Yager, 2022. "Priming self-assembly pathways by stacking block copolymers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10896-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.