IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10866-x.html
   My bibliography  Save this article

Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites

Author

Listed:
  • Karen E. Smith

    (Boise State University
    Pennsylvania State University)

  • Christopher H. House

    (Pennsylvania State University)

  • Ricardo D. Arevalo

    (University of Maryland)

  • Jason P. Dworkin

    (NASA Goddard Space Flight Center
    NASA Goddard Space Flight Center)

  • Michael P. Callahan

    (Boise State University
    NASA Goddard Space Flight Center
    NASA Goddard Space Flight Center)

Abstract

Extraterrestrial delivery of cyanide may have been crucial for the origin of life on Earth since cyanide is involved in the abiotic synthesis of numerous organic compounds found in extant life; however, little is known about the abundance and species of cyanide present in meteorites. Here, we report cyanide abundance in a set of CM chondrites ranging from 50 ± 1 to 2472 ± 38 nmol·g−1, which relates to the degree of aqueous alteration of the meteorite and indicates that parent body processing influenced cyanide abundance. Analysis of the Lewis Cliff 85311 meteorite shows that its releasable cyanide is primarily in the form of [FeII(CN)5(CO)]3− and [FeII(CN)4(CO)2]2−. Meteoritic delivery of iron cyanocarbonyl complexes to early Earth likely provided an important point source of free cyanide. Iron cyanocarbonyl complexes may have served as precursors to the unusual FeII(CN)(CO) moieties that form the catalytic centers of hydrogenases, which are thought to be among the earliest enzymes.

Suggested Citation

  • Karen E. Smith & Christopher H. House & Ricardo D. Arevalo & Jason P. Dworkin & Michael P. Callahan, 2019. "Organometallic compounds as carriers of extraterrestrial cyanide in primitive meteorites," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10866-x
    DOI: 10.1038/s41467-019-10866-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10866-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10866-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshihiro Yoshimura & Yoshinori Takano & Hiroshi Naraoka & Toshiki Koga & Daisuke Araoka & Nanako O. Ogawa & Philippe Schmitt-Kopplin & Norbert Hertkorn & Yasuhiro Oba & Jason P. Dworkin & José C. Apo, 2023. "Chemical evolution of primordial salts and organic sulfur molecules in the asteroid 162173 Ryugu," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10866-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.