IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10794-w.html
   My bibliography  Save this article

WDFY2 restrains matrix metalloproteinase secretion and cell invasion by controlling VAMP3-dependent recycling

Author

Listed:
  • Marte Sneeggen

    (University of Oslo
    Oslo University Hospital)

  • Nina Marie Pedersen

    (University of Oslo
    Oslo University Hospital)

  • Coen Campsteijn

    (University of Oslo)

  • Ellen Margrethe Haugsten

    (University of Oslo
    Oslo University Hospital)

  • Harald Stenmark

    (University of Oslo
    Oslo University Hospital)

  • Kay Oliver Schink

    (University of Oslo
    Oslo University Hospital)

Abstract

Cancer cells secrete matrix metalloproteinases to remodel the extracellular matrix, which enables them to overcome tissue barriers and form metastases. The membrane-bound matrix metalloproteinase MT1-MMP (MMP14) is internalized by endocytosis and recycled in endosomal compartments. It is largely unknown how endosomal sorting and recycling of MT1-MMP are controlled. Here, we show that the endosomal protein WDFY2 controls the recycling of MT1-MMP. WDFY2 localizes to endosomal tubules by binding to membranes enriched in phosphatidylinositol 3-phosphate (PtdIns3P). We identify the v-SNARE VAMP3 as an interaction partner of WDFY2. WDFY2 knockout causes a strong redistribution of VAMP3 into small vesicles near the plasma membrane. This is accompanied by increased, VAMP3-dependent secretion of MT1-MMP, enhanced degradation of extracellular matrix, and increased cell invasion. WDFY2 is frequently lost in metastatic cancers, most predominantly in ovarian and prostate cancer. We propose that WDFY2 acts as a tumor suppressor by serving as a gatekeeper for VAMP3 recycling.

Suggested Citation

  • Marte Sneeggen & Nina Marie Pedersen & Coen Campsteijn & Ellen Margrethe Haugsten & Harald Stenmark & Kay Oliver Schink, 2019. "WDFY2 restrains matrix metalloproteinase secretion and cell invasion by controlling VAMP3-dependent recycling," Nature Communications, Nature, vol. 10(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10794-w
    DOI: 10.1038/s41467-019-10794-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10794-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10794-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kay Oliver Schink & Kia Wee Tan & Hélène Spangenberg & Domenica Martorana & Marte Sneeggen & Virginie Stévenin & Jost Enninga & Coen Campsteijn & Camilla Raiborg & Harald Stenmark, 2021. "The phosphoinositide coincidence detector Phafin2 promotes macropinocytosis by coordinating actin organisation at forming macropinosomes," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10794-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.