IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10771-3.html
   My bibliography  Save this article

Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures

Author

Listed:
  • Chao Zhan

    (Xiamen University)

  • Bo-Wen Liu

    (Xiamen University)

  • Yi-Fan Huang

    (Xiamen University)

  • Shu Hu

    (Xiamen University)

  • Bin Ren

    (Xiamen University)

  • Martin Moskovits

    (University of California)

  • Zhong-Qun Tian

    (Xiamen University)

Abstract

Plasmon-mediated chemical reactions (PMCRs) constitute a vibrant research field, advancing such goals as using sunlight to convert abundant precursors such as CO2 and water to useful fuels and chemicals. A key question in this burgeoning field which has not, as yet, been fully resolved, relates to the precise mechanism through which the energy absorbed through plasmonic excitation, ultimately drives such reactions. Among the multiple processes proposed, two have risen to the forefront: plasmon-increased temperature and generation of energetic charge carriers. However, it is still a great challenge to confidently separate these two effects and quantify their relative contribution to chemical reactions. Here, we describe a strategy based on the construction of a plasmonic electrode coupled with photoelectrochemistry, to quantitatively disentangle increased temperature from energetic charge carriers effects. A clear separation of the two effects facilitates the rational design of plasmonic nanostructures for efficient photochemical applications and solar energy utilization.

Suggested Citation

  • Chao Zhan & Bo-Wen Liu & Yi-Fan Huang & Shu Hu & Bin Ren & Martin Moskovits & Zhong-Qun Tian, 2019. "Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10771-3
    DOI: 10.1038/s41467-019-10771-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10771-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10771-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saideep Singh & Rishi Verma & Nidhi Kaul & Jacinto Sa & Ajinkya Punjal & Shriganesh Prabhu & Vivek Polshettiwar, 2023. "Surface plasmon-enhanced photo-driven CO2 hydrogenation by hydroxy-terminated nickel nitride nanosheets," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Ananta Dey & Amal Mendalz & Anna Wach & Robert Bericat Vadell & Vitor R. Silveira & Paul Maurice Leidinger & Thomas Huthwelker & Vitalii Shtender & Zbynek Novotny & Luca Artiglia & Jacinto Sá, 2024. "Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10771-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.