IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10752-6.html
   My bibliography  Save this article

Crystal structure of an adenovirus virus-associated RNA

Author

Listed:
  • Iris V. Hood

    (National Institute of Diabetes and Digestive and Kidney Diseases)

  • Jackson M. Gordon

    (National Institute of Diabetes and Digestive and Kidney Diseases)

  • Charles Bou-Nader

    (National Institute of Diabetes and Digestive and Kidney Diseases)

  • Frances E. Henderson

    (National Institute of Diabetes and Digestive and Kidney Diseases)

  • Soheila Bahmanjah

    (National Institute of Diabetes and Digestive and Kidney Diseases)

  • Jinwei Zhang

    (National Institute of Diabetes and Digestive and Kidney Diseases)

Abstract

Adenovirus Virus-Associated (VA) RNAs are the first discovered viral noncoding RNAs. By mimicking double-stranded RNAs (dsRNAs), the exceptionally abundant, multifunctional VA RNAs sabotage host machineries that sense, transport, process, or edit dsRNAs. How VA-I suppresses PKR activation despite its strong dsRNA character, and inhibits the crucial antiviral kinase to promote viral translation, remains largely unknown. Here, we report a 2.7 Å crystal structure of VA-I RNA. The acutely bent VA-I features an unusually structured apical loop, a wobble-enriched, coaxially stacked apical and tetra-stems necessary and sufficient for PKR inhibition, and a central domain pseudoknot that resembles codon-anticodon interactions and prevents PKR activation by VA-I. These global and local structural features collectively define VA-I as an archetypal PKR inhibitor made of RNA. The study provides molecular insights into how viruses circumnavigate cellular rules of self vs non-self RNAs to not only escape, but further compromise host innate immunity.

Suggested Citation

  • Iris V. Hood & Jackson M. Gordon & Charles Bou-Nader & Frances E. Henderson & Soheila Bahmanjah & Jinwei Zhang, 2019. "Crystal structure of an adenovirus virus-associated RNA," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10752-6
    DOI: 10.1038/s41467-019-10752-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10752-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10752-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishna C. Suddala & Janghyun Yoo & Lixin Fan & Xiaobing Zuo & Yun-Xing Wang & Hoi Sung Chung & Jinwei Zhang, 2023. "Direct observation of tRNA-chaperoned folding of a dynamic mRNA ensemble," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Charles Bou-Nader & Ankur Bothra & David N. Garboczi & Stephen H. Leppla & Jinwei Zhang, 2022. "Structural basis of R-loop recognition by the S9.6 monoclonal antibody," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Aline Umuhire Juru & Rodolfo Ghirlando & Jinwei Zhang, 2024. "Structural basis of tRNA recognition by the widespread OB fold," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10752-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.