IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10569-3.html
   My bibliography  Save this article

Inkjet-printed stretchable and low voltage synaptic transistor array

Author

Listed:
  • F. Molina-Lopez

    (Stanford University
    KU Leuven)

  • T. Z. Gao

    (Stanford University)

  • U. Kraft

    (Stanford University
    University of Cambridge)

  • C. Zhu

    (Stanford University)

  • T. Öhlund

    (Stanford University
    Mid Sweden University)

  • R. Pfattner

    (Stanford University
    Institute of Materials Science of Barcelona (ICMAB-CISC))

  • V. R. Feig

    (Stanford University)

  • Y. Kim

    (Stanford University)

  • S. Wang

    (Stanford University
    University of Chicago)

  • Y. Yun

    (Samsung Advanced Institute of Technology)

  • Z. Bao

    (Stanford University)

Abstract

Wearable and skin electronics benefit from mechanically soft and stretchable materials to conform to curved and dynamic surfaces, thereby enabling seamless integration with the human body. However, such materials are challenging to process using traditional microelectronics techniques. Here, stretchable transistor arrays are patterned exclusively from solution by inkjet printing of polymers and carbon nanotubes. The additive, non-contact and maskless nature of inkjet printing provides a simple, inexpensive and scalable route for stacking and patterning these chemically-sensitive materials over large areas. The transistors, which are stable at ambient conditions, display mobilities as high as 30 cm2 V−1 s−1 and currents per channel width of 0.2 mA cm−1 at operation voltages as low as 1 V, owing to the ionic character of their printed gate dielectric. Furthermore, these transistors with double-layer capacitive dielectric can mimic the synaptic behavior of neurons, making them interesting for conformal brain-machine interfaces and other wearable bioelectronics.

Suggested Citation

  • F. Molina-Lopez & T. Z. Gao & U. Kraft & C. Zhu & T. Öhlund & R. Pfattner & V. R. Feig & Y. Kim & S. Wang & Y. Yun & Z. Bao, 2019. "Inkjet-printed stretchable and low voltage synaptic transistor array," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10569-3
    DOI: 10.1038/s41467-019-10569-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10569-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10569-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Himchan Oh & Ji-Young Oh & Chan Woo Park & Jae-Eun Pi & Jong-Heon Yang & Chi-Sun Hwang, 2022. "High density integration of stretchable inorganic thin film transistors with excellent performance and reliability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10569-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.