IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10522-4.html
   My bibliography  Save this article

Stepwise on-surface dissymmetric reaction to construct binodal organometallic network

Author

Listed:
  • Jing Liu

    (Peking University
    The Hong Kong University of Science and Technology)

  • Qiwei Chen

    (Peking University)

  • Kang Cai

    (Peking University)

  • Jie Li

    (Peking University
    Peking University Information Technology Institute (Tianjin Binhai))

  • Yaru Li

    (Peking University
    Peking University Information Technology Institute (Tianjin Binhai))

  • Xiao Yang

    (Peking University)

  • Yajie Zhang

    (Peking University
    Peking University)

  • Yongfeng Wang

    (Peking University
    Beijing Academy of Quantum Information Sciences)

  • Hao Tang

    (CEMES, UPR CNRS 8011)

  • Dahui Zhao

    (Peking University)

  • Kai Wu

    (Peking University)

Abstract

Dissymmetric reactions, which enable differentiated functionalization of equivalent sites within one molecule, have many potential applications in synthetic chemistry and materials science, but they are very challenging to achieve. Here, the dissymmetric reaction of 1,4-dibromo-2,5-diethynylbenzene (2Br-DEB) on Ag(111) is realized by using a stepwise activation strategy, leading to an ordered two-dimensional organometallic network containing both alkynyl–silver–alkynyl and alkynyl–silver–phenyl nodes. Scanning tunneling microscopy and density functional theory calculations are employed to explore the stepwise conversion of 2Br-DEB, which starts from the H-passivation of one Br-substituted site at 300 K in accompaniment with an intermolecular reaction to form one-dimensional organometallic chains containing alkynyl–silver–alkynyl nodes. Afterwards, the other equivalent Br-substituted site undergoes metalation reaction at 320–450 K, resulting in transformation of the chains into the binodal networks. These findings exemplify the achievement of the dissymmetric reaction and its practical application for controlled fabrications of complicated yet ordered nanostructures on a surface.

Suggested Citation

  • Jing Liu & Qiwei Chen & Kang Cai & Jie Li & Yaru Li & Xiao Yang & Yajie Zhang & Yongfeng Wang & Hao Tang & Dahui Zhao & Kai Wu, 2019. "Stepwise on-surface dissymmetric reaction to construct binodal organometallic network," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10522-4
    DOI: 10.1038/s41467-019-10522-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10522-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10522-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anupam Prasoon & Xiaoqing Yu & Mike Hambsch & David Bodesheim & Kejun Liu & Angelica Zacarias & Nguyen Ngan Nguyen & Takakazu Seki & Aerzoo Dianat & Alexander Croy & Gianaurelio Cuniberti & Philippe F, 2023. "Site-selective chemical reactions by on-water surface sequential assembly," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lingbo Xing & Jie Li & Yuchen Bai & Yuxuan Lin & Lianghong Xiao & Changlin Li & Dahui Zhao & Yongfeng Wang & Qiwei Chen & Jing Liu & Kai Wu, 2024. "Surface-confined alternating copolymerization with molecular precision by stoichiometric control," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Junbo Wang & Kaifeng Niu & Huaming Zhu & Chaojie Xu & Chuan Deng & Wenchao Zhao & Peipei Huang & Haiping Lin & Dengyuan Li & Johanna Rosen & Peinian Liu & Francesco Allegretti & Johannes V. Barth & Bi, 2024. "Universal inter-molecular radical transfer reactions on metal surfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10522-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.