Author
Listed:
- Sung-Hoon Park
(Soongsil University)
- Jinyoung Hwang
(Korea Aerospace University)
- Gyeong-Su Park
(Seoul National University)
- Ji-Hwan Ha
(Soongsil University)
- Minsu Zhang
(Korea University)
- Dongearn Kim
(Korean Institute of Industrial Technology)
- Dong-Jin Yun
(Samsung Electronics)
- Sangeui Lee
(Inha University)
- Sang Hyun Lee
(Korea University)
Abstract
Hybrid carbon nanotube composites with two different types of fillers have attracted considerable attention for various advantages. The incorporation of micro-scale secondary fillers creates an excluded volume that leads to the increase in the electrical conductivity. By contrast, nano-scale secondary fillers shows a conflicting behavior of the decreased electrical conductivity with micro-scale secondary fillers. Although several attempts have been made in theoretical modeling of secondary-filler composites, the knowledge about how the electrical conductivity depends on the dimension of secondary fillers was not fully understood. This work aims at comprehensive understanding of the size effect of secondary particulate fillers on the electrical conductivity, via the combination of Voronoi geometry induced from Swiss cheese models and the underlying percolation theory. This indicates a transition in the impact of the excluded volume, i.e., the adjustment of the electrical conductivity was measured in cooperation with loading of second fillers with different sizes.
Suggested Citation
Sung-Hoon Park & Jinyoung Hwang & Gyeong-Su Park & Ji-Hwan Ha & Minsu Zhang & Dongearn Kim & Dong-Jin Yun & Sangeui Lee & Sang Hyun Lee, 2019.
"Modeling the electrical resistivity of polymer composites with segregated structures,"
Nature Communications, Nature, vol. 10(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10514-4
DOI: 10.1038/s41467-019-10514-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10514-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.