IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10342-6.html
   My bibliography  Save this article

Direct dioxygen evolution in collisions of carbon dioxide with surfaces

Author

Listed:
  • Yunxi Yao

    (California Institute of Technology)

  • Philip Shushkov

    (California Institute of Technology)

  • Thomas F. Miller

    (California Institute of Technology)

  • Konstantinos P. Giapis

    (California Institute of Technology)

Abstract

The intramolecular conversion of CO2 to molecular oxygen is an exotic reaction, rarely observed even with extreme optical or electronic excitation means. Here we show that this reaction occurs readily when CO2 ions scatter from solid surfaces in a two-step sequential collision process at hyperthermal incidence energies. The produced O2 is preferentially ionized by charge transfer from the surface over the predominant atomic oxygen product, leading to direct detection of both O2+ and O2−. First-principles simulations of the collisional dynamics reveal that O2 production proceeds via strongly-bent CO2 configurations, without visiting other intermediates. Bent CO2 provides dynamic access to the symmetric dissociation of CO2 to C+O2 with a calculated yield of 1 to 2% depending on molecular orientation. This unexpected collision-induced transformation of individual CO2 molecules provides an accessible pathway for generating O2 in astrophysical environments and may inspire plasma-driven electro- and photo-catalytic strategies for terrestrial CO2 reduction.

Suggested Citation

  • Yunxi Yao & Philip Shushkov & Thomas F. Miller & Konstantinos P. Giapis, 2019. "Direct dioxygen evolution in collisions of carbon dioxide with surfaces," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10342-6
    DOI: 10.1038/s41467-019-10342-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10342-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10342-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10342-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.