IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10317-7.html
   My bibliography  Save this article

Resting brain dynamics at different timescales capture distinct aspects of human behavior

Author

Listed:
  • Raphaël Liégeois

    (National University of Singapore
    Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne
    University of Geneva)

  • Jingwei Li

    (National University of Singapore)

  • Ru Kong

    (National University of Singapore)

  • Csaba Orban

    (National University of Singapore)

  • Dimitri Van De Ville

    (Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne
    University of Geneva)

  • Tian Ge

    (Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital
    Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital)

  • Mert R. Sabuncu

    (Cornell University)

  • B. T. Thomas Yeo

    (National University of Singapore
    Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital
    Centre for Cognitive Neuroscience, Duke-NUS Medical School
    National University of Singapore)

Abstract

Linking human behavior to resting-state brain function is a central question in systems neuroscience. In particular, the functional timescales at which different types of behavioral factors are encoded remain largely unexplored. The behavioral counterparts of static functional connectivity (FC), at the resolution of several minutes, have been studied but behavioral correlates of dynamic measures of FC at the resolution of a few seconds remain unclear. Here, using resting-state fMRI and 58 phenotypic measures from the Human Connectome Project, we find that dynamic FC captures task-based phenotypes (e.g., processing speed or fluid intelligence scores), whereas self-reported measures (e.g., loneliness or life satisfaction) are equally well explained by static and dynamic FC. Furthermore, behaviorally relevant dynamic FC emerges from the interconnections across all resting-state networks, rather than within or between pairs of networks. Our findings shed new light on the timescales of cognitive processes involved in distinct facets of behavior.

Suggested Citation

  • Raphaël Liégeois & Jingwei Li & Ru Kong & Csaba Orban & Dimitri Van De Ville & Tian Ge & Mert R. Sabuncu & B. T. Thomas Yeo, 2019. "Resting brain dynamics at different timescales capture distinct aspects of human behavior," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10317-7
    DOI: 10.1038/s41467-019-10317-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10317-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10317-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Xiaolu Kong & Ru Kong & Csaba Orban & Peng Wang & Shaoshi Zhang & Kevin Anderson & Avram Holmes & John D. Murray & Gustavo Deco & Martijn Heuvel & B. T. Thomas Yeo, 2021. "Sensory-motor cortices shape functional connectivity dynamics in the human brain," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Jianzhong Chen & Angela Tam & Valeria Kebets & Csaba Orban & Leon Qi Rong Ooi & Christopher L. Asplund & Scott Marek & Nico U. F. Dosenbach & Simon B. Eickhoff & Danilo Bzdok & Avram J. Holmes & B. T., 2022. "Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10317-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.