IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10286-x.html
   My bibliography  Save this article

A tectonically driven Ediacaran oxygenation event

Author

Listed:
  • Joshua J. Williams

    (University of Exeter
    University of Edinburgh)

  • Benjamin J. W. Mills

    (University of Leeds)

  • Timothy M. Lenton

    (University of Exeter)

Abstract

The diversification of complex animal life during the Cambrian Period (541–485.4 Ma) is thought to have been contingent on an oxygenation event sometime during ~850 to 541 Ma in the Neoproterozoic Era. Whilst abundant geochemical evidence indicates repeated intervals of ocean oxygenation during this time, the timing and magnitude of any changes in atmospheric pO2 remain uncertain. Recent work indicates a large increase in the tectonic CO2 degassing rate between the Neoproterozoic and Paleozoic Eras. We use a biogeochemical model to show that this increase in the total carbon and sulphur throughput of the Earth system increased the rate of organic carbon and pyrite sulphur burial and hence atmospheric pO2. Modelled atmospheric pO2 increases by ~50% during the Ediacaran Period (635–541 Ma), reaching ~0.25 of the present atmospheric level (PAL), broadly consistent with the estimated pO2 > 0.1–0.25 PAL requirement of large, mobile and predatory animals during the Cambrian explosion.

Suggested Citation

  • Joshua J. Williams & Benjamin J. W. Mills & Timothy M. Lenton, 2019. "A tectonically driven Ediacaran oxygenation event," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10286-x
    DOI: 10.1038/s41467-019-10286-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10286-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10286-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10286-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.