IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10248-3.html
   My bibliography  Save this article

Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility

Author

Listed:
  • Hyejung Won

    (University of California, Los Angeles
    University of North Carolina)

  • Jerry Huang

    (University of California, Los Angeles)

  • Carli K. Opland

    (University of California, Los Angeles
    University of North Carolina)

  • Chris L. Hartl

    (University of California, Los Angeles)

  • Daniel H. Geschwind

    (University of California, Los Angeles
    University of California, Los Angeles
    University of California, Los Angeles)

Abstract

Modern genetic studies indicate that human brain evolution is driven primarily by changes in gene regulation, which requires understanding the biological function of largely non-coding gene regulatory elements, many of which act in tissue specific manner. We leverage chromatin interaction profiles in human fetal and adult cortex to assign three classes of human-evolved elements to putative target genes. We find that human-evolved elements involving DNA sequence changes and those involving epigenetic changes are associated with human-specific gene regulation via effects on different classes of genes representing distinct biological pathways. However, both types of human-evolved elements converge on specific cell types and laminae involved in cerebral cortical expansion. Moreover, human evolved elements interact with neurodevelopmental disease risk genes, and genes with a high level of evolutionary constraint, highlighting a relationship between brain evolution and vulnerability to disorders affecting cognition and behavior. These results provide novel insights into gene regulatory mechanisms driving the evolution of human cognition and mechanisms of vulnerability to neuropsychiatric conditions.

Suggested Citation

  • Hyejung Won & Jerry Huang & Carli K. Opland & Chris L. Hartl & Daniel H. Geschwind, 2019. "Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10248-3
    DOI: 10.1038/s41467-019-10248-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10248-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10248-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary V. Johnson & Brianna E. Hegarty & George W. Gruenhagen & Tucker J. Lancaster & Patrick T. McGrath & Jeffrey T. Streelman, 2023. "Cellular profiling of a recently-evolved social behavior in cichlid fishes," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Keira J A Johnston & Joey Ward & Pradipta R Ray & Mark J Adams & Andrew M McIntosh & Blair H Smith & Rona J Strawbridge & Theodore J Price & Daniel J Smith & Barbara I Nicholl & Mark E S Bailey, 2021. "Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank," PLOS Genetics, Public Library of Science, vol. 17(4), pages 1-27, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10248-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.