IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10236-7.html
   My bibliography  Save this article

In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release

Author

Listed:
  • Ke Ding

    (University of California
    University of California
    University of California)

  • Cristina C. Celma

    (London School of Hygiene and Tropical Medicine)

  • Xing Zhang

    (University of California)

  • Thomas Chang

    (University of California
    University of California)

  • Wesley Shen

    (University of California
    University of California)

  • Ivo Atanasov

    (University of California)

  • Polly Roy

    (London School of Hygiene and Tropical Medicine)

  • Z. Hong Zhou

    (University of California
    University of California
    University of California)

Abstract

Transcribing and replicating a double-stranded genome require protein modules to unwind, transcribe/replicate nucleic acid substrates, and release products. Here we present in situ cryo-electron microscopy structures of rotavirus dsRNA-dependent RNA polymerase (RdRp) in two states pertaining to transcription. In addition to the previously discovered universal “hand-shaped” polymerase core domain shared by DNA polymerases and telomerases, our results show the function of N- and C-terminal domains of RdRp: the former opens the genome duplex to isolate the template strand; the latter splits the emerging template-transcript hybrid, guides genome reannealing to form a transcription bubble, and opens a capsid shell protein (CSP) to release the transcript. These two “helicase” domains also extensively interact with CSP, which has a switchable N-terminal helix that, like cellular transcriptional factors, either inhibits or promotes RdRp activity. The in situ structures of RdRp, CSP, and RNA in action inform mechanisms of not only transcription, but also replication.

Suggested Citation

  • Ke Ding & Cristina C. Celma & Xing Zhang & Thomas Chang & Wesley Shen & Ivo Atanasov & Polly Roy & Z. Hong Zhou, 2019. "In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10236-7
    DOI: 10.1038/s41467-019-10236-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10236-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10236-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Li & Han Xia & Guibo Rao & Yan Fu & Tingting Chong & Kexing Tian & Zhiming Yuan & Sheng Cao, 2024. "Cryo-EM structures of Banna virus in multiple states reveal stepwise detachment of viral spikes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Simon Jenni & Joshua A. Horwitz & Louis-Marie Bloyet & Sean P. J. Whelan & Stephen C. Harrison, 2022. "Visualizing molecular interactions that determine assembly of a bullet-shaped vesicular stomatitis virus particle," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10236-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.