IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10209-w.html
   My bibliography  Save this article

A unified relationship for evaporation kinetics at low Mach numbers

Author

Listed:
  • Zhengmao Lu

    (Massachusetts Institute of Technology)

  • Ikuya Kinefuchi

    (University of Tokyo)

  • Kyle L. Wilke

    (Massachusetts Institute of Technology)

  • Geoffrey Vaartstra

    (Massachusetts Institute of Technology)

  • Evelyn N. Wang

    (Massachusetts Institute of Technology)

Abstract

We experimentally realized and elucidated kinetically limited evaporation where the molecular gas dynamics close to the liquid–vapour interface dominates the overall transport. This process fundamentally dictates the performance of various evaporative systems and has received significant theoretical interest. However, experimental studies have been limited due to the difficulty of isolating the interfacial thermal resistance. Here, we overcome this challenge using an ultrathin nanoporous membrane in a pure vapour ambient. We demonstrate a fundamental relationship between the evaporation flux and driving potential in a dimensionless form, which unifies kinetically limited evaporation under different working conditions. We model the nonequilibrium gas kinetics and show good agreement between experiments and theory. Our work provides a general figure of merit for evaporative heat transfer as well as design guidelines for achieving efficient evaporation in applications such as water purification, steam generation, and thermal management.

Suggested Citation

  • Zhengmao Lu & Ikuya Kinefuchi & Kyle L. Wilke & Geoffrey Vaartstra & Evelyn N. Wang, 2019. "A unified relationship for evaporation kinetics at low Mach numbers," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10209-w
    DOI: 10.1038/s41467-019-10209-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10209-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10209-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10209-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.