IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09884-6.html
   My bibliography  Save this article

Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis

Author

Listed:
  • Chandran Ramakrishna

    (Beckman Research Institute of City of Hope)

  • Maciej Kujawski

    (Beckman Research Institute of City of Hope)

  • Hiutung Chu

    (California Institute of Technology)

  • Lin Li

    (Beckman Research Institute of City of Hope)

  • Sarkis K. Mazmanian

    (California Institute of Technology)

  • Edouard M. Cantin

    (Beckman Research Institute of City of Hope)

Abstract

The gut commensal Bacteroides fragilis or its capsular polysaccharide A (PSA) can prevent various peripheral and CNS sterile inflammatory disorders. Fatal herpes simplex encephalitis (HSE) results from immune pathology caused by uncontrolled invasion of the brainstem by inflammatory monocytes and neutrophils. Here we assess the immunomodulatory potential of PSA in HSE by infecting PSA or PBS treated 129S6 mice with HSV1, followed by delayed Acyclovir (ACV) treatment as often occurs in the clinical setting. Only PSA-treated mice survived, with dramatically reduced brainstem inflammation and altered cytokine and chemokine profiles. Importantly, PSA binding by B cells is essential for induction of regulatory CD4+ and CD8+ T cells secreting IL-10 to control innate inflammatory responses, consistent with the lack of PSA mediated protection in Rag−/−, B cell- and IL-10-deficient mice. Our data reveal the translational potential of PSA as an immunomodulatory symbiosis factor to orchestrate robust protective anti-inflammatory responses during viral infections.

Suggested Citation

  • Chandran Ramakrishna & Maciej Kujawski & Hiutung Chu & Lin Li & Sarkis K. Mazmanian & Edouard M. Cantin, 2019. "Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09884-6
    DOI: 10.1038/s41467-019-09884-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09884-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09884-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabindra K. Mandal & Anita Mandal & Joshua E. Denny & Ruth Namazii & Chandy C. John & Nathan W. Schmidt, 2023. "Gut Bacteroides act in a microbial consortium to cause susceptibility to severe malaria," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09884-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.