IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09783-w.html
   My bibliography  Save this article

Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols

Author

Listed:
  • Yulong Zhang

    (Nanjing University)

  • Xianfeng Xu

    (Nanjing University)

  • Shaolin Zhu

    (Nanjing University
    Chinese Academy of Sciences)

Abstract

Direct (utilize easily available and abundant precursors) and selective (both chemo- and regio-) aliphatic C–H functionalization is an attractive mean with which to streamline chemical synthesis. With many possible sites of reaction, traditional methods often need an adjacent polar directing group nearby to achieve high regio- and chemoselectivity and are often restricted to a single site of functionalization. Here we report a remote aliphatic C–H thiolation process with predictable and switchable regioselectivity through NiH-catalysed migratory hydrothiolation of two feedstock chemicals (alkenes/alkynes and thiols). This mild reaction avoids the preparation of electrophilic thiolation reagents and is highly selective to thiols over other nucleophilic groups, such as alcohols, acids, amines, and amides. Mechanistic studies show that the reaction occurs through the formation of an RS-Bpin intermediate, and THF as the solvent plays an important role in the regeneration of NiH species.

Suggested Citation

  • Yulong Zhang & Xianfeng Xu & Shaolin Zhu, 2019. "Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09783-w
    DOI: 10.1038/s41467-019-09783-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09783-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09783-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Zhang & Deyong Qiao & Mei Duan & You Wang & Shaolin Zhu, 2022. "Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09783-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.