IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09757-y.html
   My bibliography  Save this article

Non-stationary coherent quantum many-body dynamics through dissipation

Author

Listed:
  • Berislav Buča

    (University of Oxford)

  • Joseph Tindall

    (University of Oxford)

  • Dieter Jaksch

    (University of Oxford
    National University of Singapore)

Abstract

The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.

Suggested Citation

  • Berislav Buča & Joseph Tindall & Dieter Jaksch, 2019. "Non-stationary coherent quantum many-body dynamics through dissipation," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09757-y
    DOI: 10.1038/s41467-019-09757-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09757-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09757-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Hui Chen & Xiangdong Zhang, 2023. "Realization of an inherent time crystal in a dissipative many-body system," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Shayan Majidy, 2024. "Noncommuting charges can remove non-stationary quantum many-body dynamics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Joseph Tindall & Amy Searle & Abdulla Alhajri & Dieter Jaksch, 2022. "Quantum physics in connected worlds," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Henrik Wilming & Tobias J. Osborne & Kevin S. C. Decker & Christoph Karrasch, 2023. "Reviving product states in the disordered Heisenberg chain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09757-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.