IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09739-0.html
   My bibliography  Save this article

Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting

Author

Listed:
  • Kei-ichi Okazaki

    (National Institutes of Natural Sciences
    Max Planck Institute of Biophysics)

  • David Wöhlert

    (Max Planck Institute of Biophysics)

  • Judith Warnau

    (Max Planck Institute of Biophysics)

  • Hendrik Jung

    (Max Planck Institute of Biophysics)

  • Özkan Yildiz

    (Max Planck Institute of Biophysics)

  • Werner Kühlbrandt

    (Max Planck Institute of Biophysics)

  • Gerhard Hummer

    (Max Planck Institute of Biophysics
    Goethe University Frankfurt)

Abstract

Na+/H+ antiporters exchange sodium ions and protons on opposite sides of lipid membranes. The electroneutral Na+/H+ antiporter NhaP from archaea Pyrococcus abyssi (PaNhaP) is a functional homolog of the human Na+/H+ exchanger NHE1, which is an important drug target. Here we resolve the Na+ and H+ transport cycle of PaNhaP by transition-path sampling. The resulting molecular dynamics trajectories of repeated ion transport events proceed without bias force, and overcome the enormous time-scale gap between seconds-scale ion exchange and microseconds simulations. The simulations reveal a hydrophobic gate to the extracellular side that opens and closes in response to the transporter domain motion. Weakening the gate by mutagenesis makes the transporter faster, suggesting that the gate balances competing demands of fidelity and efficiency. Transition-path sampling and a committor-based reaction coordinate optimization identify the essential motions and interactions that realize conformational alternation between the two access states in transporter function.

Suggested Citation

  • Kei-ichi Okazaki & David Wöhlert & Judith Warnau & Hendrik Jung & Özkan Yildiz & Werner Kühlbrandt & Gerhard Hummer, 2019. "Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09739-0
    DOI: 10.1038/s41467-019-09739-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09739-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09739-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Titouan Jaunet-Lahary & Tatsuro Shimamura & Masahiro Hayashi & Norimichi Nomura & Kouta Hirasawa & Tetsuya Shimizu & Masao Yamashita & Naotaka Tsutsumi & Yuta Suehiro & Keiichi Kojima & Yuki Sudo & Ta, 2023. "Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Wenxin Hu & Alex Song & Hongjin Zheng, 2024. "Substrate binding plasticity revealed by Cryo-EM structures of SLC26A2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Ashutosh Gulati & Surabhi Kokane & Annemarie Perez-Boerema & Claudia Alleva & Pascal F. Meier & Rei Matsuoka & David Drew, 2024. "Structure and mechanism of the K+/H+ exchanger KefC," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09739-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.