IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09560-9.html
   My bibliography  Save this article

Single-molecule characterization of extrinsic transcription termination by Sen1 helicase

Author

Listed:
  • S. Wang

    (PSL Research University
    Sorbonne Paris Cité)

  • Z. Han

    (Sorbonne Paris Cité)

  • D. Libri

    (Sorbonne Paris Cité)

  • O. Porrua

    (Sorbonne Paris Cité)

  • T. R. Strick

    (PSL Research University
    Sorbonne Paris Cité
    Ligue Contre le Cancer)

Abstract

Extrinsic transcription termination typically involves remodeling of RNA polymerase by an accessory helicase. In yeast this is accomplished by the Sen1 helicase homologous to human senataxin (SETX). To gain insight into these processes we develop a DNA scaffold construct compatible with magnetic-trapping assays and from which S. cerevisiae RNA polymerase II (Pol II), as well as E. coli RNA polymerase (ecRNAP), can efficiently initiate transcription without transcription factors, elongate, and undergo extrinsic termination. By stalling Pol II TECs on the construct we can monitor Sen1-induced termination in real-time, revealing the formation of an intermediate in which the Pol II transcription bubble appears half-rewound. This intermediate requires ~40 sec to form and lasts ~20 sec prior to final dissociation of the stalled Pol II. The experiments enabled by the scaffold construct permit detailed statistical and kinetic analysis of Pol II interactions with a range of cofactors in a multi-round, high-throughput fashion.

Suggested Citation

  • S. Wang & Z. Han & D. Libri & O. Porrua & T. R. Strick, 2019. "Single-molecule characterization of extrinsic transcription termination by Sen1 helicase," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09560-9
    DOI: 10.1038/s41467-019-09560-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09560-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09560-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Xiong & Weijing Han & Chunhua Xu & Jing Shi & Lisha Wang & Taoli Jin & Qi Jia & Ying Lu & Shuxin Hu & Shuo-Xing Dou & Wei Lin & Terence R. Strick & Shuang Wang & Ming Li, 2024. "Single-molecule reconstruction of eukaryotic factor-dependent transcription termination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09560-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.