IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09444-y.html
   My bibliography  Save this article

Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks

Author

Listed:
  • Shichao Zhang

    (Donghua University
    Donghua University)

  • Hui Liu

    (Donghua University)

  • Ning Tang

    (Donghua University)

  • Jianlong Ge

    (Donghua University)

  • Jianyong Yu

    (Donghua University
    Donghua University)

  • Bin Ding

    (Donghua University
    Donghua University)

Abstract

There is an increasing demand worldwide on advanced two-dimensional (2D) nanofibrous networks with applications ranging from environmental protection and electrical devices to bioengineering. Design of such nanoarchitectured materials has been considered a long-standing challenge. Herein, we report a direct electronetting technology for the fabrication of self-assembled 2D nanoarchitectured networks (nano-nets) from various materials. Tailoring of the precursor solution and of the microelectric field allows charged droplets, which are ejected from a Taylor cone, to levitate, deform and phase separate before they self-assemble a 2D nanofibre network architecture. The fabricated nano-nets show mechanical robustness and benefit from nanostructural properties such as enhanced surface wettability, high transparency, separation and improved air filtration properties. Calcination of the nano-nets results in the formation of carbon nano-nets with electric conductivity and titanium dioxide nano-nets with bioprotective properties.

Suggested Citation

  • Shichao Zhang & Hui Liu & Ning Tang & Jianlong Ge & Jianyong Yu & Bin Ding, 2019. "Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09444-y
    DOI: 10.1038/s41467-019-09444-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09444-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09444-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dingding Zong & Leitao Cao & Xia Yin & Yang Si & Shichao Zhang & Jianyong Yu & Bin Ding, 2021. "Flexible ceramic nanofibrous sponges with hierarchically entangled graphene networks enable noise absorption," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Xiaota Cheng & Yi-Tao Liu & Yang Si & Jianyong Yu & Bin Ding, 2022. "Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yuchen Yang & Xiangshun Li & Zhiyong Zhou & Qiaohua Qiu & Wenjing Chen & Jianying Huang & Weilong Cai & Xiaohong Qin & Yuekun Lai, 2024. "Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Liang Peng & Huarong Peng & Steven Wang & Xingjin Li & Jiaying Mo & Xiong Wang & Yun Tang & Renchao Che & Zuankai Wang & Wei Li & Dongyuan Zhao, 2023. "One-dimensionally oriented self-assembly of ordered mesoporous nanofibers featuring tailorable mesophases via kinetic control," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xuemu Li & Zhuomin Zhang & Zehua Peng & Xiaodong Yan & Ying Hong & Shiyuan Liu & Weikang Lin & Yao Shan & Yuanyi Wang & Zhengbao Yang, 2023. "Fast and versatile electrostatic disc microprinting for piezoelectric elements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09444-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.