IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09428-y.html
   My bibliography  Save this article

Author Correction: Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics

Author

Listed:
  • Jun Yuan

    (University of California, Los Angeles
    Central South University
    University of California, Los Angeles)

  • Tianyi Huang

    (University of California, Los Angeles)

  • Pei Cheng

    (University of California, Los Angeles)

  • Yingping Zou

    (Central South University)

  • Huotian Zhang

    (Linköping University)

  • Jonathan Lee Yang

    (University of California)

  • Sheng-Yung Chang

    (University of California, Los Angeles)

  • Zhenzhen Zhang

    (Central South University)

  • Wenchao Huang

    (University of California, Los Angeles)

  • Rui Wang

    (University of California, Los Angeles)

  • Dong Meng

    (University of California, Los Angeles
    University of California, Los Angeles)

  • Feng Gao

    (Linköping University)

  • Yang Yang

    (University of California, Los Angeles
    University of California, Los Angeles)

Abstract

The original PDF version of this Article contained an error in the Additional information section, which incorrectly included the statement ‘This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019’. This has been removed from the PDF version of the Article. The HTML version was correct from the time of publication.

Suggested Citation

  • Jun Yuan & Tianyi Huang & Pei Cheng & Yingping Zou & Huotian Zhang & Jonathan Lee Yang & Sheng-Yung Chang & Zhenzhen Zhang & Wenchao Huang & Rui Wang & Dong Meng & Feng Gao & Yang Yang, 2019. "Author Correction: Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09428-y
    DOI: 10.1038/s41467-019-09428-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09428-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09428-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yang Bai & Ze Zhang & Qiuju Zhou & Hua Geng & Qi Chen & Seoyoung Kim & Rui Zhang & Cen Zhang & Bowen Chang & Shangyu Li & Hongyuan Fu & Lingwei Xue & Haiqiao Wang & Wenbin Li & Weihua Chen & Mengyuan , 2023. "Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jiehao Fu & Qianguang Yang & Peihao Huang & Sein Chung & Kilwon Cho & Zhipeng Kan & Heng Liu & Xinhui Lu & Yongwen Lang & Hanjian Lai & Feng He & Patrick W. K. Fong & Shirong Lu & Yang Yang & Zeyun Xi, 2024. "Rational molecular and device design enables organic solar cells approaching 20% efficiency," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yanan Shi & Yilin Chang & Kun Lu & Zhihao Chen & Jianqi Zhang & Yangjun Yan & Dingding Qiu & Yanan Liu & Muhammad Abdullah Adil & Wei Ma & Xiaotao Hao & Lingyun Zhu & Zhixiang Wei, 2022. "Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Hongyuan Fu & Jia Yao & Ming Zhang & Lingwei Xue & Qiuju Zhou & Shangyu Li & Ming Lei & Lei Meng & Zhi-Guo Zhang & Yongfang Li, 2022. "Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09428-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.