IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09352-1.html
   My bibliography  Save this article

Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells

Author

Listed:
  • Won Dong Lee

    (Technion)

  • Dzmitry Mukha

    (Technion)

  • Elina Aizenshtein

    (Technion)

  • Tomer Shlomi

    (Technion
    Technion
    Technion)

Abstract

The inability to inspect metabolic activities within subcellular compartments has been a major barrier to our understanding of eukaryotic cell metabolism. Here, we describe a spatial-fluxomics approach for inferring metabolic fluxes in mitochondria and cytosol under physiological conditions, combining isotope tracing, rapid subcellular fractionation, LC-MS-based metabolomics, computational deconvolution, and metabolic network modeling. Applied to study reductive glutamine metabolism in cancer cells, shown to mediate fatty acid biosynthesis under hypoxia and defective mitochondria, we find a previously unappreciated role of reductive IDH1 as the sole net contributor of carbons to fatty acid biosynthesis under standard normoxic conditions in HeLa cells. In murine cells with defective SDH, we find that reductive biosynthesis of citrate in mitochondria is followed by a reversed CS activity, suggesting a new route for supporting pyrimidine biosynthesis. We expect this spatial-fluxomics approach to be a highly useful tool for elucidating the role of metabolic dysfunction in human disease.

Suggested Citation

  • Won Dong Lee & Dzmitry Mukha & Elina Aizenshtein & Tomer Shlomi, 2019. "Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09352-1
    DOI: 10.1038/s41467-019-09352-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09352-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09352-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud A. Bassal & Saumya E. Samaraweera & Kelly Lim & Brooks A. Benard & Sheree Bailey & Satinder Kaur & Paul Leo & John Toubia & Chloe Thompson-Peach & Tran Nguyen & Kyaw Ze Ya Maung & Debora A. Ca, 2022. "Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ruohong Wang & Yandong Yin & Jingshu Li & Hongmiao Wang & Wanting Lv & Yang Gao & Tangci Wang & Yedan Zhong & Zhiwei Zhou & Yuping Cai & Xiaoyang Su & Nan Liu & Zheng-Jiang Zhu, 2022. "Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09352-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.