IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09327-2.html
   My bibliography  Save this article

Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin

Author

Listed:
  • Gang-Qin Liu

    (The Chinese University of Hong Kong)

  • Xi Feng

    (The Chinese University of Hong Kong)

  • Ning Wang

    (The Chinese University of Hong Kong)

  • Quan Li

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Ren-Bao Liu

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

Abstract

Quantum coherence control usually requires low temperature environments. Even for nitrogen-vacancy center spins in diamond, a remarkable exception, the coherence signal is limited to about 700 K due to the quench of the spin-dependent fluorescence at a higher temperature. Here we overcome this limit and demonstrate quantum coherence control of the electron spins of nitrogen-vacancy centers in nanodiamonds at temperatures near 1000 K. The scheme is based on initialization and readout of the spins at room temperature and control at high temperature, which is enabled by pulse laser heating and rapid diffusion cooling of nanodiamonds on amorphous carbon films. Using the diamond magnetometry based on optically detected magnetic resonance up to 800 K, we observe the magnetic phase transition of a single nickel nanoparticle at about 615 K. This work enables nano-thermometry and nano-magnetometry in the high-temperature regime.

Suggested Citation

  • Gang-Qin Liu & Xi Feng & Ning Wang & Quan Li & Ren-Bao Liu, 2019. "Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09327-2
    DOI: 10.1038/s41467-019-09327-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09327-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09327-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Savvin & Alexander Dormidonov & Evgeniya Smetanina & Vladimir Mitrokhin & Evgeniy Lipatov & Dmitriy Genin & Sergey Potanin & Alexander Yelisseyev & Viktor Vins, 2021. "NV– diamond laser," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09327-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.