IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09190-1.html
   My bibliography  Save this article

Human RAD51 paralogue SWSAP1 fosters RAD51 filament by regulating the anti-recombinase FIGNL1 AAA+ ATPase

Author

Listed:
  • Kenichiro Matsuzaki

    (Osaka University)

  • Shizuka Kondo

    (Osaka University
    Osaka University)

  • Tatsuya Ishikawa

    (Osaka University
    Osaka University)

  • Akira Shinohara

    (Osaka University)

Abstract

RAD51 assembly on single-stranded (ss)DNAs is a crucial step in the homology-dependent repair of DNA damage for genomic stability. The formation of the RAD51 filament is promoted by various RAD51-interacting proteins including RAD51 paralogues. However, the mechanisms underlying the differential control of RAD51-filament dynamics by these factors remain largely unknown. Here, we report a role for the human RAD51 paralogue, SWSAP1, as a novel regulator of RAD51 assembly. Swsap1-deficient cells show defects in DNA damage-induced RAD51 assembly during both mitosis and meiosis. Defective RAD51 assembly in SWSAP1-depleted cells is suppressed by the depletion of FIGNL1, which binds to RAD51 as well as SWSAP1. Purified FIGNL1 promotes the dissociation of RAD51 from ssDNAs. The dismantling activity of FIGNL1 does not require its ATPase but depends on RAD51-binding. Purified SWSAP1 inhibits the RAD51-dismantling activity of FIGNL1. Taken together, our data suggest that SWSAP1 protects RAD51 filaments by antagonizing the anti-recombinase, FIGNL1.

Suggested Citation

  • Kenichiro Matsuzaki & Shizuka Kondo & Tatsuya Ishikawa & Akira Shinohara, 2019. "Human RAD51 paralogue SWSAP1 fosters RAD51 filament by regulating the anti-recombinase FIGNL1 AAA+ ATPase," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09190-1
    DOI: 10.1038/s41467-019-09190-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09190-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09190-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akbar Zainu & Pauline Dupaigne & Soumya Bouchouika & Julien Cau & Julie A. J. Clément & Pauline Auffret & Virginie Ropars & Jean-Baptiste Charbonnier & Bernard Massy & Raphael Mercier & Rajeev Kumar &, 2024. "FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Guangxue Liu & Jimin Li & Boxue He & Jiaqi Yan & Jingyu Zhao & Xuejie Wang & Xiaocong Zhao & Jingyan Xu & Yeyao Wu & Simin Zhang & Xiaoli Gan & Chun Zhou & Xiangpan Li & Xinghua Zhang & Xuefeng Chen, 2023. "Bre1/RNF20 promotes Rad51-mediated strand exchange and antagonizes the Srs2/FBH1 helicases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Sarah R. Hengel & Katherine G. Oppenheimer & Chelsea M. Smith & Matthew A. Schaich & Hayley L. Rein & Julieta Martino & Kristie E. Darrah & Maggie Witham & Oluchi C. Ezekwenna & Kyle R. Burton & Benne, 2024. "The human Shu complex promotes RAD51 activity by modulating RPA dynamics on ssDNA," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09190-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.