IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09151-8.html
   My bibliography  Save this article

Aqueous proton-selective conduction across two-dimensional graphyne

Author

Listed:
  • Le Shi

    (The Hong Kong University of Science and Technology)

  • Ao Xu

    (The Hong Kong University of Science and Technology)

  • Ding Pan

    (The Hong Kong University of Science and Technology
    HKUST Fok Ying Tong Research Institute)

  • Tianshou Zhao

    (The Hong Kong University of Science and Technology)

Abstract

The development of direct methanol fuel cells is hindered by the issue of methanol crossover across membranes, despite the remarkable features resulting from the use of liquid fuel. Here we investigate the proton-selective conduction behavior across 2D graphyne in an aqueous environment. The aqueous proton conduction mechanism transitions from bare proton penetration to a mixed vehicular and Grotthuss transportation when the side length of triangular graphyne pores increases to 0.95 nm. A further increase in the side length to 1.2 nm results in the formation of a patterned aqueous/vacuum interphase, enabling protons to be conducted through the water wires via Grotthuss mechanism with low energy barriers. More importantly, it is found that 2D graphyne with the side length of less than 1.45 nm can effectively block methanol crossover, suggesting that 2D graphyne with an appropriate pore size is an ideal material to achieve zero-crossover proton-selective membranes.

Suggested Citation

  • Le Shi & Ao Xu & Ding Pan & Tianshou Zhao, 2019. "Aqueous proton-selective conduction across two-dimensional graphyne," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09151-8
    DOI: 10.1038/s41467-019-09151-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09151-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09151-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Zhou, Jing & Cao, Jiamu & Zhang, Yufeng & Liu, Junfeng & Chen, Junyu & Li, Mingxue & Wang, Weiqi & Liu, Xiaowei, 2021. "Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Zhang, Rongji & Cao, Jiamu & Wang, Weiqi & Zhou, Jing & Chen, Junyu & Chen, Liang & Chen, Weiping & Zhang, Yufeng, 2023. "An improved strategy of passive micro direct methanol fuel cell: Mass transport mechanism optimization dominated by a single hydrophilic layer," Energy, Elsevier, vol. 274(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09151-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.