IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09057-5.html
   My bibliography  Save this article

Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites

Author

Listed:
  • Yinsheng Guo

    (Columbia University)

  • Omer Yaffe

    (Weizmann Institute of Science)

  • Trevor D. Hull

    (Columbia University)

  • Jonathan S. Owen

    (Columbia University)

  • David R. Reichman

    (Columbia University)

  • Louis E. Brus

    (Columbia University)

Abstract

Lead-halide perovskites have emerged as promising materials for photovoltaic and optoelectronic applications. Their significantly anharmonic lattice motion, in contrast to conventional harmonic semiconductors, presents a conceptual challenge in understanding the genesis of their exceptional optoelectronic properties. Here we report a strongly temperature dependent luminescence Stokes shift in the electronic spectra of both hybrid and inorganic lead-bromide perovskite single crystals. This behavior stands in stark contrast to that exhibited by more conventional crystalline semiconductors. We correlate the electronic spectra with the anti-Stokes and Stokes Raman vibrational spectra. Dielectric solvation theories, originally developed for excited molecules dissolved in polar liquids, reproduce our experimental observations. Our approach, which invokes a classical Debye-like relaxation process, captures the dielectric response originating from the incipient anharmonicity of the LO phonon at about 20 meV (160 cm−1) in the lead-bromide framework. We reconcile this liquid-like model incorporating thermally-activated dielectric solvation with more standard solid-state theories of the emission Stokes shift in crystalline semiconductors.

Suggested Citation

  • Yinsheng Guo & Omer Yaffe & Trevor D. Hull & Jonathan S. Owen & David R. Reichman & Louis E. Brus, 2019. "Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09057-5
    DOI: 10.1038/s41467-019-09057-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09057-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09057-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudiu M. Iaru & Annalisa Brodu & Niels J. J. Hoof & Stan E. T. Huurne & Jonathan Buhot & Federico Montanarella & Sophia Buhbut & Peter C. M. Christianen & Daniël Vanmaekelbergh & Celso Mello Donega , 2021. "Fröhlich interaction dominated by a single phonon mode in CsPbBr3," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09057-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.