IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08995-4.html
   My bibliography  Save this article

Publisher Correction: A meiosis-specific BRCA2 binding protein recruits recombinases to DNA double-strand breaks to ensure homologous recombination

Author

Listed:
  • Jingjing Zhang

    (University of Gothenburg)

  • Yasuhiro Fujiwara

    (University of Tokyo)

  • Shohei Yamamoto

    (University of Tokyo)

  • Hiroki Shibuya

    (University of Gothenburg)

Abstract

The original version of this Article contained errors in Figure 5. In panel g, the male and female symbols preceding each genotype were inadvertently converted to ‘B‘ and ‘≅‘, respectively. These errors have been corrected in both the PDF and HTML versions of the Article.

Suggested Citation

  • Jingjing Zhang & Yasuhiro Fujiwara & Shohei Yamamoto & Hiroki Shibuya, 2019. "Publisher Correction: A meiosis-specific BRCA2 binding protein recruits recombinases to DNA double-strand breaks to ensure homologous recombination," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08995-4
    DOI: 10.1038/s41467-019-08995-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08995-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08995-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingjing Zhang & Mario Ruiz & Per-Olof Bergh & Marcus Henricsson & Nena Stojanović & Ranjan Devkota & Marius Henn & Mohammad Bohlooly-Y & Abrahan Hernández-Hernández & Manfred Alsheimer & Jan Borén &, 2024. "Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. James M. Dunce & Owen R. Davies, 2024. "BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Manickam Gurusaran & Jingjing Zhang & Kexin Zhang & Hiroki Shibuya & Owen R. Davies, 2024. "MEILB2-BRME1 forms a V-shaped DNA clamp upon BRCA2-binding in meiotic recombination," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08995-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.