IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08930-7.html
   My bibliography  Save this article

Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles

Author

Listed:
  • Dan Zhao

    (Linköping University)

  • Anna Martinelli

    (Chalmers University of Technology)

  • Andreas Willfahrt

    (Linköping University
    Stuttgart Media University)

  • Thomas Fischer

    (Stuttgart Media University)

  • Diana Bernin

    (Chalmers University of Technology)

  • Zia Ullah Khan

    (Linköping University)

  • Maryam Shahi

    (University of Kentucky)

  • Joseph Brill

    (University of Kentucky)

  • Magnus P. Jonsson

    (Linköping University)

  • Simone Fabiano

    (Linköping University)

  • Xavier Crispin

    (Linköping University)

Abstract

Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an “ambipolar” ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.

Suggested Citation

  • Dan Zhao & Anna Martinelli & Andreas Willfahrt & Thomas Fischer & Diana Bernin & Zia Ullah Khan & Maryam Shahi & Joseph Brill & Magnus P. Jonsson & Simone Fabiano & Xavier Crispin, 2019. "Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08930-7
    DOI: 10.1038/s41467-019-08930-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08930-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08930-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lianhui Li & Sijia Feng & Yuanyuan Bai & Xianqing Yang & Mengyuan Liu & Mingming Hao & Shuqi Wang & Yue Wu & Fuqin Sun & Zheng Liu & Ting Zhang, 2022. "Enhancing hydrovoltaic power generation through heat conduction effects," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08930-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.