IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08894-8.html
   My bibliography  Save this article

Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation

Author

Listed:
  • Masoud Ghodrati

    (Monash University
    Monash University)

  • Elizabeth Zavitz

    (Monash University
    Monash University)

  • Marcello G. P. Rosa

    (Monash University
    Monash University)

  • Nicholas S. C. Price

    (Monash University
    Monash University)

Abstract

Sensory systems face a barrage of stimulation that continually changes along multiple dimensions. These simultaneous changes create a formidable problem for the nervous system, as neurons must dynamically encode each stimulus dimension, despite changes in other dimensions. Here, we measured how neurons in visual cortex encode orientation following changes in luminance and contrast, which are critical for visual processing, but nuisance variables in the context of orientation coding. Using information theoretic analysis and population decoding approaches, we find that orientation discriminability is luminance and contrast dependent, changing over time due to firing rate adaptation. We also show that orientation discrimination in human observers changes during adaptation, in a manner consistent with the neuronal data. Our results suggest that adaptation does not maintain information rates per se, but instead acts to keep sensory systems operating within the limited dynamic range afforded by spiking activity, despite a wide range of possible inputs.

Suggested Citation

  • Masoud Ghodrati & Elizabeth Zavitz & Marcello G. P. Rosa & Nicholas S. C. Price, 2019. "Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08894-8
    DOI: 10.1038/s41467-019-08894-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08894-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08894-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08894-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.