IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08862-2.html
   My bibliography  Save this article

The Cep57-pericentrin module organizes PCM expansion and centriole engagement

Author

Listed:
  • Koki Watanabe

    (National Institute of Genetics
    The Graduate University for Advanced Studies (SOKENDAI)
    The University of Tokyo)

  • Daisuke Takao

    (National Institute of Genetics
    The University of Tokyo)

  • Kei K Ito

    (The University of Tokyo)

  • Mikiko Takahashi

    (Teikyo Heisei University)

  • Daiju Kitagawa

    (National Institute of Genetics
    The Graduate University for Advanced Studies (SOKENDAI)
    The University of Tokyo)

Abstract

Centriole duplication occurs once per cell cycle to ensure robust formation of bipolar spindles and chromosome segregation. Each newly-formed daughter centriole remains connected to its mother centriole until late mitosis. The disengagement of the centriole pair is required for centriole duplication. However, the mechanisms underlying centriole engagement remain poorly understood. Here, we show that Cep57 is required for pericentriolar material (PCM) organization that regulates centriole engagement. Depletion of Cep57 causes PCM disorganization and precocious centriole disengagement during mitosis. The disengaged daughter centrioles acquire ectopic microtubule-organizing-center activity, which results in chromosome mis-segregation. Similar defects are observed in mosaic variegated aneuploidy syndrome patient cells with cep57 mutations. We also find that Cep57 binds to the well-conserved PACT domain of pericentrin. Microcephaly osteodysplastic primordial dwarfism disease pericentrin mutations impair the Cep57-pericentrin interaction and lead to PCM disorganization. Together, our work demonstrates that Cep57 provides a critical interface between the centriole core and PCM.

Suggested Citation

  • Koki Watanabe & Daisuke Takao & Kei K Ito & Mikiko Takahashi & Daiju Kitagawa, 2019. "The Cep57-pericentrin module organizes PCM expansion and centriole engagement," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08862-2
    DOI: 10.1038/s41467-019-08862-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08862-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08862-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Eun Park & Tae-Sung Kim & Yan Zeng & Melissa Mikolaj & Jong Ahn & Muhammad S. Alam & Christina M. Monnie & Victoria Shi & Ming Zhou & Tae-Wook Chun & Frank Maldarelli & Kedar Narayan & Jinwoo Ahn, 2024. "Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Yutaka Takeda & Takumi Chinen & Shunnosuke Honda & Sho Takatori & Shotaro Okuda & Shohei Yamamoto & Masamitsu Fukuyama & Koh Takeuchi & Taisuke Tomita & Shoji Hata & Daiju Kitagawa, 2024. "Molecular basis promoting centriole triplet microtubule assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Revati Darp & Marc A. Vittoria & Neil J. Ganem & Craig J. Ceol, 2022. "Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08862-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.