IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08749-2.html
   My bibliography  Save this article

On the degradation mechanisms of quantum-dot light-emitting diodes

Author

Listed:
  • Song Chen

    (Soochow University)

  • Weiran Cao

    (TCL Corporate Research)

  • Taili Liu

    (City University of Hong Kong)

  • Sai-Wing Tsang

    (City University of Hong Kong)

  • Yixing Yang

    (TCL Corporate Research)

  • Xiaolin Yan

    (TCL Corporate Research)

  • Lei Qian

    (TCL Corporate Research)

Abstract

The operating lifetime of blue quantum-dot light-emitting diodes (QLED) is currently a short slab for this emerging display technology. To pinpoint the origin of device degradation, here we apply multiple techniques to monitor the electric-field distribution and space-charge accumulation across the multilayered structure before and after lifetime tests. Evident by charge-modulated electro-absorption and capacitance-voltage characteristics, the excited electrons in blue quantum dots (QD) are prone to cross the type II junction between the QD emission layer and the electron-transporting layer (ETL) due to the offset of conduction band minimum, leading to space-charge accumulation and operating-voltage rise in the ETL. Therefore, unlike those very stable red devices, of which the lifetime is primarily limited by the slow degradation of hole-transporting layer, the poor lifetime of blue QLED originates from the fast degradation at the QD-ETL junction. Materials engineering for efficient electron injection is prerequisite for the boost of operating lifetime.

Suggested Citation

  • Song Chen & Weiran Cao & Taili Liu & Sai-Wing Tsang & Yixing Yang & Xiaolin Yan & Lei Qian, 2019. "On the degradation mechanisms of quantum-dot light-emitting diodes," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08749-2
    DOI: 10.1038/s41467-019-08749-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08749-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08749-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyu He & Xiaoqi Tang & Yunzhou Deng & Ni Yin & Wangxiao Jin & Xiuyuan Lu & Desui Chen & Chenyang Wang & Tulai Sun & Qi Chen & Yizheng Jin, 2023. "Anomalous efficiency elevation of quantum-dot light-emitting diodes induced by operational degradation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Qiang Su & Zinan Chen & Shuming Chen, 2024. "Tracing the electron transport behavior in quantum-dot light-emitting diodes via single photon counting technique," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jiming Wang & Cuixia Yuan & Shuming Chen, 2024. "Household alternating current electricity plug-and-play quantum-dot light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Pode, Ramchandra, 2020. "Organic light emitting diode devices: An energy efficient solid state lighting for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Xingtong Chen & Xiongfeng Lin & Likuan Zhou & Xiaojuan Sun & Rui Li & Mengyu Chen & Yixing Yang & Wenjun Hou & Longjia Wu & Weiran Cao & Xin Zhang & Xiaolin Yan & Song Chen, 2023. "Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08749-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.