IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08677-1.html
   My bibliography  Save this article

Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane

Author

Listed:
  • Maria Angela Gomes de Castro

    (University Medical Center Göttingen)

  • Hanna Wildhagen

    (University Medical Center Göttingen)

  • Shama Sograte-Idrissi

    (University Medical Center Göttingen
    University of Göttingen Medical Center)

  • Christoffer Hitzing

    (University Medical Center Göttingen)

  • Mascha Binder

    (University Medical Center Hamburg-Eppendorf)

  • Martin Trepel

    (University Medical Center Hamburg-Eppendorf
    Augsburg Medical Center)

  • Niklas Engels

    (University Medical Center Göttingen)

  • Felipe Opazo

    (University Medical Center Göttingen
    University of Göttingen Medical Center)

Abstract

Stimulation of the B cell antigen receptor (BCR) triggers signaling pathways that promote the differentiation of B cells into plasma cells. Despite the pivotal function of BCR in B cell activation, the organization of the BCR on the surface of resting and antigen-activated B cells remains unclear. Here we show, using STED super-resolution microscopy, that IgM-containing BCRs exist predominantly as monomers and dimers in the plasma membrane of resting B cells, but form higher oligomeric clusters upon stimulation. By contrast, a chronic lymphocytic leukemia-derived BCR forms dimers and oligomers in the absence of a stimulus, but a single amino acid exchange reverts its organization to monomers in unstimulated B cells. Our super-resolution microscopy approach for quantitatively analyzing cell surface proteins may thus help reveal the nanoscale organization of immunoreceptors in various cell types.

Suggested Citation

  • Maria Angela Gomes de Castro & Hanna Wildhagen & Shama Sograte-Idrissi & Christoffer Hitzing & Mascha Binder & Martin Trepel & Niklas Engels & Felipe Opazo, 2019. "Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08677-1
    DOI: 10.1038/s41467-019-08677-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08677-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08677-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sam Daly & João Ferreira Fernandes & Ezra Bruggeman & Anoushka Handa & Ruby Peters & Sarah Benaissa & Boya Zhang & Joseph S. Beckwith & Edward W. Sanders & Ruth R. Sims & David Klenerman & Simon J. Da, 2024. "High-density volumetric super-resolution microscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Florian Märkl & Christoph Schultheiß & Murtaza Ali & Shih-Shih Chen & Marina Zintchenko & Lukas Egli & Juliane Mietz & Obinna Chijioke & Lisa Paschold & Sebastijan Spajic & Anne Holtermann & Janina Dö, 2024. "Mutation-specific CAR T cells as precision therapy for IGLV3-21R110 expressing high-risk chronic lymphocytic leukemia," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Alexey Ferapontov & Marjan Omer & Isabelle Baudrexel & Jesper Sejrup Nielsen & Daniel Miotto Dupont & Kristian Juul-Madsen & Philipp Steen & Alexandra S. Eklund & Steffen Thiel & Thomas Vorup-Jensen &, 2023. "Antigen footprint governs activation of the B cell receptor," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08677-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.