IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08621-3.html
   My bibliography  Save this article

Polygyny is linked to accelerated birdsong evolution but not to larger song repertoires

Author

Listed:
  • Kate T. Snyder

    (Vanderbilt University)

  • Nicole Creanza

    (Vanderbilt University)

Abstract

Non-monogamous mating behaviors including polygyny or extra-pair paternity are theorized to amplify sexual selection, since some males attract multiple mates or copulate with paired females. In several well-studied songbird species, females prefer more complex songs and larger repertoires; thus, non-monogamous mating behaviors are predicted to accelerate song evolution, particularly toward increased complexity. However, studies within songbird clades have yielded mixed results, and the effect of non-monogamy on song evolution remains unclear. Here, we construct a large-scale database synthesizing mating system, extra-pair paternity, and song information and perform comparative analyses alongside songbird genetic phylogenies. Our results suggest that polygyny drives faster evolution of syllable repertoire size (measured as average number of unique syllables), but this rapid evolution does not produce larger repertoires in polygynous species. Instead, both large and small syllable repertoires quickly evolve toward moderate sizes in polygynous lineages. Contrary to expectation, high rates of extra-pair paternity coincide with smaller repertoires.

Suggested Citation

  • Kate T. Snyder & Nicole Creanza, 2019. "Polygyny is linked to accelerated birdsong evolution but not to larger song repertoires," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08621-3
    DOI: 10.1038/s41467-019-08621-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08621-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08621-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08621-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.