IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08584-5.html
   My bibliography  Save this article

TRADD regulates perinatal development and adulthood survival in mice lacking RIPK1 and RIPK3

Author

Listed:
  • John P. Dowling

    (Thomas Jefferson University)

  • Mohamed Alsabbagh

    (Thomas Jefferson University)

  • Christina Casale

    (Thomas Jefferson University)

  • Zheng-Gang Liu

    (National Cancer Institute)

  • Jianke Zhang

    (Thomas Jefferson University)

Abstract

TRADD is an adaptor for TNFR1-induced apoptosis and NFκB activation. However, TRADD-deficient mice undergo normal development and contain normal lymphoid populations, which contrasts with an embryonic defect in mice lacking FADD, the shared adaptor mediating apoptosis. Recent studies indicate FADD suppresses embryonic necroptosis mediated by RIPK1. TRADD was suggested to also mediate necroptosis. Here we report that targeting TRADD fails to rescue Fadd−/− embryos from necroptosis, and ablation of TRADD rescues Ripk1−/− mice from perinatal lethality when RIPK3-mediated necroptosis is disabled. The resulting Ripk1−/−Ripk3−/−Tradd−/− mice survive until early adulthood, but die thereafter. A single allele of Tradd is optimal for survival of Ripk1−/−Ripk3−/−Tradd+/− mice. We show that TRADD plays a more dominating role in NFκB-signaling than RIPK1. While RIPK1 protects thymocytes from TNFα-induced apoptosis, TRADD promotes this process. The data demonstrate that TRADD is critical in perinatal and adult mice lacking RIPK1 and RIPK3, which has not been appreciated in prior studies.

Suggested Citation

  • John P. Dowling & Mohamed Alsabbagh & Christina Casale & Zheng-Gang Liu & Jianke Zhang, 2019. "TRADD regulates perinatal development and adulthood survival in mice lacking RIPK1 and RIPK3," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08584-5
    DOI: 10.1038/s41467-019-08584-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08584-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08584-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08584-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.